Peter Fetterolf 博士是网络技术、架构和经济分析方面的专家。他负责财务建模和白皮书以及 ACG Research Business Analytics Engine 的软件开发。Fetterolf 博士拥有网络行业的多学科背景,拥有超过 30 年的管理顾问、企业家、执行经理和学者经验。他在经济建模、业务案例分析、工程管理、产品定义、市场验证、网络设计以及企业和服务提供商网络战略方面经验丰富。
。CC-BY-NC 4.0国际许可证的永久性。是根据作者/资助者提供的预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2023年9月13日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.09.13.557418 doi:Biorxiv Preprint
电子邮件:larinhasmelo@gmail.com摘要高血糖危机是急性并发症,通常来自糖尿病(DM),与高血糖直接相关。是住院和医院环境中死亡的重要原因。这种危机可以通过糖尿病性乳胶(CAD)或高血糖高血糖状态(EHH)出现。CAD中涉及的发病机理涉及胰岛素缺乏症,与反调节激素的增加有关,导致高血糖症和大分解代谢状态,这一事实可能导致糖氧化,脂解,脂解,酮生成,酮症异生和可能导致严重代谢酸的酮酸的酸性形成。EHH虽然也以严重的高血糖症为特征,但由于缺乏cetocidosis,与CAD不同,因为在这种病理学中,与CAD相比,酮的产生较少。在急性介绍中,患者可能会出现嗜睡,昏昏欲睡,意识丧失,呼吸障碍,呼吸症,呼吸症,腹痛,恶心和呕吐。诊断在于评估血糖,酮症,代谢性酸中毒和渗透性。取决于提到的这些检查的变化的结合,在CAD或EHH中可以区分高血糖危机。这些病理学的治疗方法是围绕水合,钾的替代和胰岛素治疗,三个步骤对于危机的逆转非常重要。关键词:高血糖危机,糖尿病性乳房,高质量高血糖状态,综述。抽象高血糖危机是急性并发症,通常是由糖尿病(DM)引起的,与高血糖直接相关。是住院和医院环境中死亡的重要原因。这种危机可能出现为糖尿病性酮症酸中毒(DKA)或高质性高血糖状态(HHE)。DKA中涉及的发病机理涉及胰岛素缺乏症,与反调节激素的增加有关,导致高血糖和大分解代谢状态,这一事实可能导致糖生成,脂解,酮生成,酮症生成和过度形成酮酸,导致严重的代谢酸酸。HHE,尽管也以严重的高血糖为特征,但与DKA
行业用作集装箱建筑材料和一部分机器。尽管它们在某些条件下易受腐蚀,尽管具有抗腐蚀的保护性氧气层。寻求保护这些金属,在受限的自旋极化DNP基础下,使用局部密度B3LYP进行了有关铝和锌腐蚀抑制的理论研究,以获得分子PNNT的稳定几何形状。e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。键长和角度的数据表明该分子是金属表面上的四方平面。Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程
这篇本科论文由 eGrove 的荣誉学院 (Sally McDonnell Barksdale 荣誉学院) 免费提供给您,供您免费访问。它已被 eGrove 的授权管理员接受并纳入荣誉论文。有关更多信息,请联系 egrove@olemiss.edu。
定性和定量植物化学分析,选定草药的抗氧化活性和抗菌潜力,piper betle和persicaria odorata叶提取穆罕默德·阿卜杜勒(Muhammad Abdul)基础1,2 Saeed Murtaza 7 1 1 1 1 1 13400 UPM兽医学院临床前科学系 Malaysia, 43400 UPM, Serdang, Selangor, Malaysia 4 Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Upm, Serdang, Selangor, Malaysia 5 Department of Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Upm, Serdang, Selangor, Malaysia 5 Department of实验室诊断,兽医学院,伴侣动物医学和手术,马来西亚兽医学院,马来西亚大学兽医学院,43400 UPM,塞尔丹,雪兰莪州,马来西亚6兽医药理学和毒理学系,兽医学院,USMANU和FODIYOO,2346 Skiia of Faciy of Facirinary Medicine of Medicine of Facirinary Medicine of Facirinary Mangic of Skiia of 2346 Skiia,兽医科学,Bahauddin Zakariya大学,Multan 60000,旁遮普邦,巴基斯坦
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机制理解对于技术相关材料尤其有价值,在这些材料中,促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序杂阴离子材料的结构已被很好地表征,但阳离子无序杂阳离子材料的研究较少。对于杂阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20然而,对于杂阳离子材料,指导短程有序偏好的因素尚不清楚。23
要全面了解杂原子材料,既需要准确描述其短程结构,也需要了解促进或抑制特定短程有序的物理原理。这种机械理解对于技术相关材料尤其有价值,其中促进或抑制特定局部结构模式的有针对性的合成方案可能允许优化关键材料特性。虽然许多阴离子无序异阴离子材料的结构已被充分表征,但 1,2,19 – 22 阳离子无序异阳离子材料的研究较少。对于异阴离子材料,已经提出了各种通用设计规则来解释基于电子、应变或静电效应的部分或完全阴离子有序的具体例子。1,2,15,20 然而,对于杂阳离子材料,影响短程有序偏好的因素尚不十分清楚。23
摘要。人工智能 (AI) 为组织提供了前所未有的机遇。然而,使用 AI 的风险之一是其结果和内部运作不可理解。在信任至关重要的行业(例如医疗保健和金融)中,可解释的 AI (XAI) 是必需的。但是,XAI 的实施并不简单,因为它需要解决技术和社会两个方面的问题。以前对 XAI 的研究主要侧重于技术或社会方面,缺乏实用视角。本研究旨在实证检验 AI 系统开发人员、用户和管理者在 AI 系统开发过程中面临的 XAI 相关方面。为此,在两家荷兰金融服务公司中使用四个用例进行了多案例研究。我们的研究结果揭示了在实施 XAI 期间必须考虑的广泛方面,我们将其分组并集成到概念模型中。该模型可帮助从业者在开发 XAI 时做出明智的决策。我们认为,需要考虑的方面多种多样,因此需要采用 XAI“设计”方法,尤其是在金融、公共服务和医疗保健等高风险行业的高风险用例中。因此,概念模型为与 XAI 相关的方法、技术和工具的方法工程提供了分类法。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。