干预计划的想法数量。本次会议将回顾基于研究/证据的写作实践和策略(例如,自我调节策略开发),以及技术工具(例如应用程序、人工智能,如 ChatGPT)如何合乎道德地成为二年级(写作教学通常从二年级开始)至 12 年级的叙述性、信息性、说明性、说服性和论证性文本写作活动的一部分。
本文论文讨论了这种新的DNABERT模型,并解决了它对生物学和健康产生影响的程度。在这里,与当前现有模型相比,DNABERT是否是革命性的。通过比较先前研究中预测模型的准确性与DNABERT的准确性,我得出的结论是,DNABERT可以在剪接位点预测上获得出色的性能,并且可以获得最高的准确性,但无法获得启动子预测的出色性能。因此,我的目的是确定DNABERT的工作原理,以便可以获得可能可以用于进一步优化和自定义的理解。因此,分析了DNABERT的K-MER令牌化方法和字节对编码。这是通过采用Ji等人的DNABERT的所述方法来进行的。(2021)和Zhou等人的DNABERT-2。(2023)。从此分析中可以得出结论,两种方法都比现有的DNA/RNA预测方法更好,但是BPE是最有前途的。之后,使用DNABERT(DNABERT-PROM)重点介绍了启动子预测,以清楚地了解其过程以及如何进行预培训。为了获得此信息,Ji等人的DNABERT-PROM方法的描述。(2021)进行了调整。在这里,可以确定的是,使用具有TATA-Box存在或不存在的远端启动子,对DNABERT-PROM进行了培训,以预测Homo Sapiens。此外,使用EPDNEW数据库获取启动子的数据。为此,Ji等人的DNABERT的描述特性。在分析了DNABERT-PROM之后,我得出的结论是,它是一个高效的模型,可以预测Homo Sapiens中的启动子。最后,我选择提供更广泛的DNABERT观点,以研究如何在生物学和健康领域中应用。(2021)进行了调整,并将其与生物学和健康中的当前限制进行了比较。在这里,我得出的结论是,DNABERT是生物学和健康中转录调节预测的最有前途的模型,因为它可以解决上下文所需的信息。我得出的结论是,DNABERT也应该是执行其他类型的DNA/RNA预测的“第一选择”方法,尽管它们的用法绝不能替代研究和诊断中的决策。尽管DNABERT已经是一个非常充分的预测模型,但仍需要进一步的优化和自定义来扩大其对生物学和健康中顺序预测的贡献。
艺术疗法已被确定为一种强大的心理治疗工具,该工具利用艺术媒体来增强心理和神经系统健康。这得到了各种神经影像学和电生理研究的支持,这些研究揭示了其对脑功能的积极影响。这篇综述强调了在非洲背景下艺术疗法的潜力,由于其适应于非语言交流环境中的文化细微差别和有效性,因此可能有助于解决各种神经和心理需求。该评论还重点介绍了一次艺术疗法课程,旨在解决医护人员经历的悲伤。本评论还强调了扩大教育计划,政策制定和研究的必要性,以将艺术疗法更全面地整合到非洲医疗保健系统中。这些进步对于克服文化和资源相关的障碍至关重要,确保在非洲背景下艺术疗法的可及性和功效。
摘要 1 1 引言 1 1.1 背景 1 1.2 问题化 2 1.3 研究问题 2 1.4 目的 3 2 理论框架 3 2.1 沟通理论 3 2.1.1 部门内和部门间沟通 4 2.1.2 沟通质量和频率 4 2.2 技术接受模型 (TAM) 5 2.2.1 基于人工智能的沟通与传统方法 5 2.2.2 人工智能沟通工具的可靠性和可信度 6 2.3 组织学习理论 6 2.3.1 适应新的沟通工具 7 2.3.2 绩效改进 8 2.4 社会学习理论 (SLT) 8 2.4.1 社会因素和人工智能的使用 9 2.4.2 团队互动的有效性 10 2.5 创新扩散 (DOI) 理论 10 2.5.1 推动人工智能在通信领域应用的因素 11 2.5.2 人工智能在通信领域的未来愿景 11 3 方法论 12 3.1 研究设计 13 3.2 预研究 13 3.3 数据收集 13 3.3.1 原始数据 13 3.3.2 原始数据抽样 14 3.3.3 受访者和公司 14 3.3.4 访谈指南 15 3.4 数据分析 16 3.5 质量评估 16 3.6 道德考虑 17 3.7 局限性 17 4 实证研究结果 18 4.1 原始数据 18 4.1.1 部门内和部门间沟通 18 4.1.2 沟通质量和频率 19 4.1.3 基于人工智能的沟通与传统方法 20 4.1.4 人工智能通讯工具的可靠性和可信度 20
Figure 1. Virtual Worlds' continuum Figure 2. Evolution of the PSTW database from previous publication Figure 3. PSTW composition by technology type Figure 4. Distribution of cases according to their starting date Figure 5. Distribution of cases according to administrative level of application Figure 6. Cases across levels of administration, by technology Figure 7. Distribution of cases according to administrative level and e-government interaction Figure 8. Distribution of cases according to level of administration and status of development Figure 9 . Public value assessment of the cases Figure 10. Public value assessment by type of technology Figure 11. Public assessment subcategories for Improved Public Services Figure 12. Public assessment subcategories for Improved administrative efficiency Figure 13. Public assessment value for Open government capabilities Figure 14. Distribution of AI cases by status of development Figure 15. Distribution of cases by type of e-government service and level of administration Figure 16. Distribution of AI cases by process type and level of administration. Figure 17. Distribution of cases across type of services and functions of government Figure 18. Distribution of AI cases according to application type and function of government. Figure 19. Distribution of AI cases according to technology subdomain. Figure 20. Distribution of Generative AI cases by status of development Figure 21. Geographic distribution of the Generative AI cases and their responsible organisations Figure 22. Distribution of Blockchain-based cases by status of development. Figure 23. Distribution of Blockchain-based cases by level of administration. Figure 24. Blockchain-based cases by e-government type of interaction and level of administration. Figure 25. Blockchain-based cases across type of interaction and function of government. Figure 26. Blockchain-based cases by type of application and function of government. Figure 27. Distribution of AI and Blockchain cases by cross border sector feature Figure 28. Distribution of AI and Blockchain cases by cross sector border feature Figure 29. Distribution of cases of other emerging technologies across functions of government. Figure 30. Cases of emerging technologies by type of service and level of administration.
*通讯作者,电子邮件:cyprian.mieszczynski@ncbj.gov.pl摘要摘要McChasy Code的主要目标是,通过模拟在Cryselline结构和crysefters cryselline cropters cryselline cropters和collesters的过程中,在通道(RBS/c)中记录了Rutherford反向散射光谱实验实验,该光谱实验是在频道/c/c中复制了。该代码的2.0版本提供了模拟大型频道的可能性(Ca.10 8原子)基于晶体学数据或分子动态(MD)计算而创建的任意结构。在这项工作中,我们介绍了代码的当前状态以及最近对镍(Ni)单晶形成的扩展结构缺陷(边缘位错和位错环)的研究结果。描述了两种建模扩展缺陷的方法:一种使用McChasy Code(PEIERLS-NABARRO方法)开发的,另一种是通过MD(LAMMPS代码)对Ni结构进行修改和热化获得的另一种。由局部弹丸 - 通量密度分布在缺陷周围进行了定性和定量研究。1。在过去的几十年中,许多组对不同材料的辐射缺陷进行了广泛的研究。许多作者[1-4]将卢瑟福的反向散射光谱(RBS/C)技术用作分析离子植入单晶的结构特性的标准方法[1-4]。不幸的是,缺乏适当的RBS/C光谱分析和过度简化方法的工具,通常会引起误导性结果。因此,开发一个适当的工具,可以分别针对在研究晶体中形成的各种缺陷进行详细的定量分析。McChasy V.1.0是在八十年代末在国家核研究中心开发的[5,6]。该代码的第一个版本的主要原理是通过模拟He-ions在内部旅行
3。文献评论3.1虚拟影响者3.2社交媒体 - Instagram 3.3虚拟影响者,参与和真实性3.4影响者Imaginaries 3.5广告中的汽车行业3.6本研究的理论差距和贡献
了解人类的社会行为对于综合愿景和机器人技术至关重要。微观的观察(例如,分裂行动)不足,需要采取一种全面的方法来考虑个人行为,组内动态和社会群体层次,以彻底理解。要解决数据集限制,本文引入了JRDB-Social,JRDB的扩展[2]。旨在填补跨室内和室外社会环境的人类理解的空白,JRDB-Social提供了三个层次的注释:个体属性,组内侵入和社会群体环境。该数据集旨在增强我们对机器人应用的人类社会动态的理解。利用最近的尖端多模式大型语言模型,我们评估了我们的基准,以表达其破译社会人类行为的能力。
