2 兰契大学植物学系,兰契,贾坎德邦,印度 3 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 4 兰契大学植物学系生物技术硕士,兰契大学植物学系,印度贾坎德邦 摘 要 本研究旨在建立一种优化的印度芥菜 (L.) Czern & Coss. (芥菜) 不同部位的体外愈伤组织诱导和增殖方案。将叶和茎外植体培养在补充了各种生长素和细胞分裂素浓度的 Murashige 和 Skoog (MS) 培养基中,以获得愈伤组织形成的最佳生长条件。所测试的激素组合包括 0.5、1 和 2 mg/L 的吲哚-3-乙酸 (IAA)、0.5、1 和 2 mg/L 的苄氨基嘌呤以及 0.5、1 和 2 mg/L 的 2,4-二氯苯氧乙酸 (2,4-D)。基于愈伤组织诱导频率,在不同时期和光照、温度和湿度培养条件下,对叶片和茎外植体产生的愈伤组织进行三次重复评估。在以 1:1 的比例补充 BAP 和 2,4 D 的 MS 培养基中,将叶片作为外植体的结果显示,接种 45 天后愈伤组织诱导率最高,这是独一无二的。茎外植体接种 45 天后,在激素浓度 BAP:IAA(0.5:1)下产生愈伤组织。这些产生的愈伤组织显示出明显的伸长和良好的叶片形状。未分化愈伤组织增生、变绿并形成成熟芽凸显了愈伤组织的有效性。继代培养后,愈伤组织的习惯化和持续传代使得培养基中无需添加细胞分裂素。愈伤组织获得细胞分裂素,导致出芽和营养器官发育。反过来,这些细胞允许器官发生,成熟植物成功再生。这种可重复的方案可用于愈伤组织诱导和植物再生,这是植物育种或生物技术应用(包括用于作物改良的基因转化)的重要工具。此外,通过既定的方案,对芥菜组织中植物激素之间相互作用的认识得到了提高。 关键词:愈伤组织、再生、生长素、作物、BAP、器官发生、芥菜 (L.) 1. 引言 在植物组织培养中,愈伤组织发生和器官发生是基因转化和作物发育所必需的过程。这些程序中的一个关键阶段是有效的愈伤组织诱导,它为以后的再生和转化提供所需的细胞材料。先前的研究表明,为了在不同芸苔属植物中获得较高的愈伤组织诱导率和植物再生,优化植物激素浓度至关重要(Gupta & Chaturvedi,2021 年;Singh 等人,2020 年)。大多数人称之为印度芥菜,Brassica juncea (L.) Czern. & Coss。是一种广泛种植的油籽作物,其油料和叶类蔬菜对经济十分重要。
批准对 STEVEN J. MAYER、ECOM GENIE CONSULTING LLC 提出约定初步禁令的联合动议,
著名的是,在高温高温超导体中,超导顺序的相位敏感测量[1-7]解决了有关顺序参数对称的正在进行的辩论,这表明了这些关键事实是这些是D-Wave超级导体。当前正在研究的大多数材料系统都在高度分层(即Quasi-Two维度),例如丘比特,或者是明确的二维(2D),例如由Van-der Waals Materi-Materi-Materi-siali-s Materi-siles制成的各种明确的二维铺设结构,尤其是石墨烯。因此,鉴于此类边缘的复杂性质,原始库酸酯实验中使用的类似物的边缘连接通常很难解释,有时很难解释。相反,许多准2D材料相对容易裂解,使得表面的正常(因此“ z”方向)是导向最少的方向。在2D材料的情况下,这种几何考虑仍然更清楚。
标题页 1 完整标题:2 使用人工智能在心电图上检测肥厚型心肌病 3 4 简称:5 使用人工智能在心电图上检测肥厚型心肌病 6 7 作者: 8 James M Hillis,MBBS DPhil 1,2,3 9 Bernardo C Bizzo,MD PhD 1,3,4 10 Sarah F Mercaldo,PhD 1,3,4 11 Ankita Ghatak,MSc 1 12 Ashley L MacDonald,BSc 1 13 Madeleine A Halle,BSc 1 14 Alexander S Schultz 1 15 Eric L'Italien 1 16 Victor Tam 1 17 Nicole K Bart,MBBS DPhil 3,5 18 Filipe A Moura,MD PhD 3,5 19 Amine M Awad,BMBCh 2,3,6 20 David Bargiela,MBBS PhD 2,3,6 21 Sarajune Dagen,RN 7 22 Danielle Toland,RN BSN 6 23 Alexander J Blood,MD MSc 3,5 24 David A Gross,MD PhD 3,5 25 Karola S Jering,MD 3,5 26 Mathew S Lopes,MD MPH 3,5 27 Nicholas A Marston,MD MPH 3,5 28 Victor D Nauffal,MD 3,5 29 Keith J Dreyer,DO PhD 1,3,4 30 Benjamin M Scirica,MD* 1,3,5 31 Carolyn Y Ho,MD* 3,5 32 33 * 这些作者对这项工作的贡献相同。34 35 作者所属: 36 1 美国马萨诸塞州波士顿麻省总医院布莱根医院 37 2 美国马萨诸塞州波士顿麻省总医院神经内科 38 3 美国马萨诸塞州波士顿哈佛医学院 39 4 美国马萨诸塞州波士顿麻省总医院放射科 40 5 美国马萨诸塞州波士顿布莱根妇女医院心血管医学科 41 6 美国马萨诸塞州波士顿布莱根妇女医院神经内科 42 7 美国马萨诸塞州波士顿布莱根妇女医院神经外科 43
固态纳米孔传感的一个长期未实现的目标是在转位过程中实现 DNA 的平面外电传感和控制,这是实现碱基逐个棘轮的先决条件,从而实现生物纳米孔中的 DNA 测序。二维 (2D) 异质结构能够以原子层精度构建平面外电子器件,是用作电传感膜的理想但尚未探索的候选材料。在这里,我们展示了一种纳米孔架构,使用由 n 型 MoS 2 上的 p 型 WSe 2 组成的垂直 2D 异质结二极管。该二极管表现出由离子势调制的整流层间隧穿电流,而异质结势则相互整流通过纳米孔的离子传输。我们同时使用离子和二极管电流实现了 DNA 转位的检测,并展示了 2.3 倍的静电减慢的转位速度。封装层可实现稳健的操作,同时保留用于传感的原子级锐利 2D 异质界面的空间分辨率。这些结果为单个生物分子的非平面电传感和控制建立了范例。
我们研究由非热相差的超导体形成的非热约瑟夫森连接,这在非热性下是有限的,这自然是由于与正常储层的耦合所致。取决于非热性的结构,以智障的自我能量捕获,低能频谱寄主在拓扑上稳定的异常点,即在零或有限的真实能量作为超导相位差的函数。有趣的是,相应的相位偏置的超级流可以在此类特殊点上获取发散的纤维。此实例是一种自然而独特的非热效应,它标志着一种可能增强约瑟夫森连接的敏感性的可能方法。我们的作品为实现独特的非温和现象而开辟了一种方法,这是由于非热门拓扑与约瑟夫森效应之间的相互作用所致。
AC Josephson效应吸引了很多关注,作为研究基本物理现象的强大探测。1–7常规的基于氧化物的约瑟夫森连接(JJS)具有正弦电流相关联(CPR)。结果,微波辐照下的这些连接的AC响应表现为vn¼n(U 0 f mw)处的相锁电压平台,其中n是整数,u 0是the the the the the the the the the the the the fl ux量子。然而,许多理论研究预测超导体 - 疾病 - 导向器 - 超导体(S-SM – S)系统中的非鼻腔CPR,在这些系统中,高度透明模式通过Andreev结合状态携带电流。8–11这种现象的实验表现示例包括拓扑系统中缺少奇数步骤1,2,4,6和高度偏斜的琐碎琐碎系统中的分数shapiro步骤。1,12–14因此,研究AC Josephson效应可以提供对S -SM – S系统物理学的关键见解。由于其狄拉克带结构和出色的载体传输性能,石墨烯是实现S -SM – S Josephson插条设备的吸引人选择。的确,许多研究有助于推进石墨烯JJ设备。3,5,15–20在其中的观测值是AC JOSEPHSON在石墨烯JJ中的效应。它们包括零跨步骤,19个双稳定性,20和分数电压在多末端系统中。3,5但是,尚未在平面石墨烯JJS中系统地研究了分数shapiro的步骤及其门电压依赖性,我们在这里的研究中报告了这一点。
表面和界面的电子结构对量子器件的特性起着关键作用。在这里,我们结合密度泛函理论与混合泛函以及最先进的准粒子引力波 (QSGW) 计算,研究了实际的 Al / InAs / Al 异质结的电子结构。我们发现 QSGW 计算和混合泛函计算之间具有良好的一致性,而后者本身与角分辨光电子能谱实验相比也非常出色。我们的论文证实,需要对界面质量进行良好的控制,才能获得 InAs / Al 异质结所需的特性。对自旋轨道耦合对电子态自旋分裂的影响的详细分析表明,k 空间中存在线性缩放,这与某些界面态的二维性质有关。QSGW 和混合泛函计算的良好一致性为可靠地使用 QSGW 的有效近似来研究非常大的异质结打开了大门。
冷藏效率与往复同行相比。包括基于GD的合金或其他一阶相变材料,例如LA-FE-SI和Mn-Fe-P-GE。到目前为止,该系统是由宇航技术中心(美国)设计的,该中心在零温度下达到3024 W冷却能力,而东芝公司则在无负载条件下达到42 K温度跨度,强调了这项技术的功效。1此外,磁化冷藏量在氮和氢液化中发现了潜在的应用,相对于涉及Joule-Thomson阀门的调用液化技术,其热效率和熵密度较高。2这些房间/低温原型采用包装的颗粒床或堆叠的平面板,被隔垫隔开以提供热的通道