在篮子编织和宗教仪式中使用的Kagome晶格(包括几何沮丧的角落共享三角形)已成为一个令人兴奋的平台,用于研究量子物理学中物质的奇异阶段,例如量子旋转液体,Chern Magnitism,Chern Magnisism,Chiral Chiral Charge Mentive Mentive Pover和Topodic offercatipation Polidsic officalistic topicalistic topical officatipation topicalistic topical officatipation topicalistic topical officatipation。尽管对kagome化合物产生了极大的兴趣,但该晶格内强拓制绝缘子的探索仍然很少。在这项工作中,我们提出了一个新的Kagome化合物家族,R V 6 GE 6(r =稀土原子),以容纳如此强大的拓扑绝缘体阶段。此阶段的特征是反向散射的弹性表面状态,其由由于带反转而产生的散装绝缘间隙保护。希尔伯特空间中频带结构的拓扑不变性使我们能够识别不同类别的间隙带结构,并确认在r v 6 ge 6中通过从头开始计算的费米能量附近的频段存在z 2的拓扑不变。我们的调查确立了R V 6 GE 6作为Kagome化合物中强大的拓扑绝缘子家族,进一步扩大了这种异国情调的晶格几何形状中的拓扑可能性。值得注意的是,费米能量附近的电子结构以钒kagome晶格平面为主导,这为从琐碎的带中孤立地研究Kagome物理学提供了令人兴奋的机会。此外,在R V 6 GE 6中观察拓扑绝缘体阶段,其中钒价状态在D轨道中,创造了一个前所未有的机会,通过在钒层中的掺杂液中引入拓扑状态,并引入了钒站点,并引入了不合规的d -electrons。
所有作者都为手稿做出了贡献。bárbaraperes lapetinagonçalvesSaraiva:参与数据收集,数据分析,统计分析和文本的写作。Juliana Daud Ribeiro:参与了研究设计,统计分析,对结果的讨论和文本的最终版本。BárbaraDeAraújoCasa:参与了数据收集阶段和文本的修订。renato hideki osugi:参与了数据收集阶段和文本的写作。Gustavo Sawazaki Nakagome:参与数据收集阶段。奥兰多·维托里诺·德·卡斯特罗·内托(Orlando Vitorino de Castro Neto):参与数据收集阶段。Fernando Adami:参与了文本的统计分析和写作。Manuela de Almeida Roediger:参与了文本的统计分析和写作。JoãoAntonioCorrea:参与了研究的一般取向,研究设计的定义和文本的最终修订。JoãoAntonioCorrea:参与了研究的一般取向,研究设计的定义和文本的最终修订。
kagome磁铁为多种拓扑量子现象提供了一个引人入胜的平台,其中沮丧的晶体结构,磁化和旋转轨道耦合(SOC)之间的微妙相互作用可以产生高度可调的拓扑状态。在这里,利用角度分辨光发射光谱法,我们直接在A-A堆叠的Kagome磁铁GDMN 6 SN 6中直接可视化具有强大平面分散体的Weyl线。值得注意的是,Weyl线分别表现出强大的磁化方向可调节性SOC间隙和结合能可调节性,分别用TB和LI代替GD。我们的结果不仅说明了磁化方向和价算作有效的调整旋钮,以实现和控制不同的三维拓扑阶段,而且还证明了AMN 6 SN 6(a =稀土或Li,Li,Mg,CA)是用于探索多样化出现的出现拓扑量化响应的多功能材料家族。
一个kagome晶格自然具有其电子结构中的Dirac Fermions,Flat Band和Van Hove奇异性。Dirac Fermions编码拓扑结构,平面带偏爱相关现象,例如磁性,而Van Hove的奇异性可以导致对远程多个体型的不稳定性,从而完全可以实现和发现一系列拓扑kagome磁铁,并具有带有exotic特性的超导体。探索kagome材料的最新进展揭示了由于几何,拓扑,自旋和相关性之间的量子相互作用而产生的丰富的新兴现象。在这里,我们回顾了该领域的这些关键发展,从Kagome晶格的基本概念开始,再到Chern和Weyl拓扑磁性的实现,再到各种平坦的多体型相关性,然后再到非常规的电荷密度密度波和超导导性的难题。我们强调了理论思想和实验观察之间的联系,以及kagome磁铁和kagome超导体内的量子相互作用之间的键,以及它们与拓扑绝缘子,拓扑超导体,Weyl Semimetals和高磁性超管制的概念之间的关系。这些发展广泛地桥接了拓扑量子物理学,并将多体物理物质相关联,并在各种散装材料中与拓扑量子问题的前沿相关。
一个单个铁磁kagome层被预计将实现具有量化霍尔电导的Chern绝缘子,在堆叠后可以变成具有较大异常霍尔效应(AHE)和磁性光学活性的Weyl Semimetal。的确,在Kagome双层材料Fe 3 Sn 2中,检测到了一个大的AHE。为了直接探测负责任的频带结构的特征,我们除了在广泛的频率范围内的对角光导率外测量光霍尔电导率光谱。由于前者是对AHE的固有贡献的能量选择性度量,因此我们借助从第一个原理计算获得的动量和带分解的光学传导频谱来确定它们的共同起源。我们发现,低能量的转变,在动量空间中追踪“螺旋体积”,让人联想到以前预测的螺旋结节线,从而实质上有助于AHE,这进一步增加了来自多个高能量互动过渡的贡献。我们的研究还表明,在这种库莫磁铁中,局部库仑相互作用导致了Fermi水平附近的显着带重建。