作为AI功能,越来越多地超过了人类在复杂任务中的水平,当前的一致性技术在内,包括SFT和RLHF在确保可靠的监督方面面临着基本挑战。这些方法依赖于直接的人类评估,并且当AI输出超过人类认知阈值时变得站不住脚。应对这一挑战,我们探讨了两个假设:(1)对批评的行为比批评本身更容易,从而扩展了广泛认可的观察,即验证比批评本身是一种专业的一代形式,而对cripique领域来说比生成更容易。 (2)这种难度关系被递归地持有,表明当直接评估是不可行的,进行高阶的文献(例如,对批评批评的批评)提供了更可拖延的监督途径。考试这些假设,我们在多个任务中执行人类,人类和AI-AI实验。我们的结果表明,支持这些假设和表达的令人鼓舞的证据表明,递归自我批判是可扩展监督的有前途的方向。
1. 波士顿儿童医院血液科/肿瘤科、丹娜法伯癌症研究所儿科肿瘤科、哈佛干细胞研究所、麻省理工学院和哈佛大学布罗德研究所、哈佛医学院儿科系,马萨诸塞州波士顿 02115,美国
摘要 随着扩展成为大规模量子 (LSQ) 计算的关键问题,硬件控制系统的资源成本将变得越来越高。本文介绍了一种适用于自旋量子位的信号生成紧凑型直接数字合成 (DDS) 架构,该架构在波形精度和同步通道数量方面是可扩展的。该架构可以以 5 GS/s 的速度产生斜坡、频率梳和任意波形生成 (AWG) 的可编程组合,最坏情况下的数字反馈延迟为 76.8 ns。基于 FPGA 的系统具有高度可配置性,并利用比特流切换来实现可扩展校准所需的高灵活性。该架构还提供 GHz 速率多路复用 I/Q 单边带 (SSB) 调制,用于可扩展反射测量。该架构已在 Xilinx ZCU111 FPGA 上的硬件中得到验证,展示了复杂信号的混合以及多路复用控制和测量的频率梳生成的质量。这种设计的主要优势在于提高了数模转换器 (DAC) 频率斜坡的控制能力,与现有的基于 AWG 的架构相比,内存需求降低了几个数量级。单通道硬件非常紧凑,默认配置下,一个 DAC 通道仅占用 2% 的 ZCU111 逻辑资源,为集成反馈、校准和量子误差校正 (QEC) 留下了大量电路资源。
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。
本文已被接受以进行出版和进行完整的同行评审,但并未通过复制,排版,分页和校对过程,这可能会导致此版本与记录版本之间的差异。请引用本文为doi:10.1002/adma.202203794。
B.Ikaso Consulting的采购研究建议报告的介绍 - 由Ikaso Consulting的Tom Arnold先生提出。
目前还没有统一的框架来访问这种不确定的、丰富的异构数据集合,因此研究人员不得不依赖临时工具。特别是,当前试图解决这一任务的工具的一个主要弱点是只开发了非常有限的命题查询语言。在本文中,我们介绍了 NeuroLang,这是一种基于一阶逻辑的概率语言,具有存在性规则、概率不确定性、开放世界假设下的本体集成以及内置机制,可保证对非常大的数据集进行可处理的查询回答。NeuroLang 的主要目标是提供一个统一的框架,无缝集成异构数据(如本体),并通过一组正式标准将细粒度认知领域映射到大脑区域,促进可共享和高度可重复的研究。在介绍该语言及其通用查询回答架构之后,我们讨论了现实世界的用例,展示了 NeuroLang 如何应用于实际场景。
本文提出了一种基于深度学习的可容纳性评估方法,构成了街头规模的智能手机点云和城市规模的3D行人网络(3DPN)。3DPN已被研究和映射以进行轮廓和智能城市应用。然而,由于省略的行人路径,未发现的楼梯和过度简化的高架人行道,文献中3DPN的城市水平尺度对于评估轮椅的可及性(即车轮)不完整;如果映射量表处于为轮椅使用者设计的微观级别,则可以更好地表示这些功能。在本文中,我们使用智能手机点云加强了城市规模的3DPN,这是一种有希望的数据源,用于补充细微的细节和由于厘米级别的准确性,鲜艳的色彩,高密度和人群源性质而导致的细颗粒细节和温度变化。三步方法重建行人路径,楼梯和坡度细节,并丰富城市规模的3DPN进行轮廓评估。PEDESTRIAN路径的实验结果表现出准确的3DPN中心线位置(miou = 88。81%),楼梯检测(miou = 86。39%)和轮子性评估(MAE = 0。09)。本文贡献了一种适合,准确和人群采购的轮子评估方法,该方法将无处不在的智能手机和3DPN架起高密度和丘陵的城市区域的3DPN。