我们提出了一个场景表示形式,我们称之为触觉的辐射场(TARF),它将视觉和触摸带入共享的3D空间。此表示形式可用于估计场景中给定3D位置的视觉和触觉信号。我们从一系列照片和稀疏采样触摸探针中捕获了场景的tarf。我们的方法利用了两个见解:(i)基于常见的触摸传感器建立在普通摄像机上,因此可以使用多视图几何形状中的方法对图像进行注册,并且(ii)在视觉和结构上相似的场景区域具有相同的触觉效果。我们使用这些见解将触摸信号注册到捕获的视觉场景中,并训练有条件的扩散模型,该模型带有从神经辐射场呈现的RGB-D图像,生成其相应的触觉信号。为了评估我们的方法,我们收集了一个TARF的数据集。此数据集比预先持有的现实世界数据集包含更多的触摸样本,并且为每个捕获的触摸信号提供了空间对齐的视觉信号。我们揭示了跨模式生成模型的准确性以及在下游任务上捕获的视觉效果数据的实用性。项目页面:https:// dou- yiming.github.io/tarf。
• 粒子漂移的方向从一个太阳黑子周期变化到下一个周期。 • 对于 A>0,当 GCR 进入日光层时,漂移将它们带向两极并沿着电流片向外移动。 • 对于 A<0,模式相反(“A 负”)
人类的历史就在这里。这是一片古老的土地,地球上的第一批人就在这里发现。古老的帝国曾在此地繁荣兴盛,如今已被遗忘,只剩下大片废墟。苏丹瓦赫达的本提乌/马拉卡尔地区位于白尼罗河上游和尼罗河支流巴尔加扎勒河沿岸,一段新的历史正在书写。这片干旱的土地被尼罗河肥沃的洪泛平原分割开来,为这里创造了世界上最肥沃的农业机会之一。努尔族和丁卡族部落已在此南部地区生活了几个世纪,耕种土地、放牧羊群。稍北一点是努巴族,他们以小部落的形式生活在山区。这里道路稀少,基础设施很少甚至没有。多年前,在小村庄里,人们挖了淡水井。这里没有电,也没有电话。医疗服务非常有限。学校和教堂都很简陋。这里有区域贸易中心,只有旱季才能通过小路和崎岖不平的道路到达。在这个地方,只有最强大的人才能够生存下来。这些村庄在部落领土的基础设施内生存了几个世纪。一些村庄通过无线电与外界联系。然而,在这些社区里,每个人都知道 9 月 11 日的事件。每个人都说“我们和美国站在一起,愿意帮助他们。现在你知道我们 50 年来经历了什么”。美国雪佛龙公司在这里勘探石油,并于 20 世纪 70 年代发现了大片油田。
黑色磷纳米片(BPNSS)由于其独特的物理化学特性而在石墨烯以外的2D材料中是新星。[38–47]在黑色磷(BP)晶体中,不同的BP层通过弱的范德华相互作用堆叠在一起,并且磷原子通过在层中通过SP 3杂交共价键相互联系,在每个phos-Phors-Phorus Atom上留下了一对单独的电子。[48] BPNSS沿扶手椅方向显示出重复的蜂窝结构,并沿着Zigzag方向进行双层布置,从而在BPNS中产生强大的面内各向异性电子和光学特性。[49–51] BPNSS显示了从0.3 eV(bulk bp)到2.0 eV(单层)的厚度依赖性直接带盖的广泛范围。它们的光学响应由激子主导,在几百meV范围内表现出结合能。[52,53]更重要的是,单层BP具有1000 cm 2 v-1 s-1的电荷载体迁移率,而在野外效应晶体管中,良好的ON/OFF ON/OFF比率为10 3-10 4。[54]由于这些令人兴奋的特性,BPNS在光催化,生物医学,能源存储和转换以及电子和光电设备中显示了潜在的应用。[55–61]但是,在环境条件下,BPNS的稳定性较差限制了其实际应用,这主要是因为在氧气和/或水存在下,磷原子化学降解为氧化磷。在不同的钝化策略中,通过共价或非共价方法(方案1)构建异质结构可以帮助获得具有各种架构和功能的基于BPN的异质结构。[62–66]到目前为止,已经证明了不同的方法,例如化学官能化[67-72]和金属氧化物或离子载体质层涂层[73-75],作为改善BPNS环境稳定性的有效方法。基于BPN的异质结构可以提供BPNS的大面积钝化,结合属性
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
摘要:研究调查了供应链管理实践对Covid-19大流行时代Obuasi Goldfields的运营绩效的影响。该研究采用了描述性横断面调查。从代表的总人员Obuasi Goldfields随机选择了108名员工:高级经理,经理和助理经理。该研究有目的地采样,他们在Covid-19- 19日大流行时出现。一份问卷用于收集研究数据。该研究的结果表明,信息共享水平是最大的实践,其次是战略供应商,以及在Covid-19时代Obuasi Goldfields的供应链管理实践方面的客户关系。该研究进一步发现,供应链管理实践对Covid-19时代的Obuasi Goldfields的运营绩效产生了影响。基于结果,得出的结论是,在Covid-19时代,在Obuasi Goldfields的供应管理实践中实践了信息共享水平,战略供应商合作伙伴关系和客户关系。
定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
这些应用只是计算机视觉巨大潜力的冰山一角。随着机器学习、硬件功能和数据可用性的进步,该领域继续快速扩展。计算机视觉技术还在零售、游戏、增强现实、工业自动化、机器人技术和文化遗产保护等领域得到应用。随着计算机视觉的发展,我们可以期待在 3D 重建、对象跟踪、人体姿势估计、面部识别和视觉场景的语义理解等领域取得进一步突破。通过利用计算机视觉的力量,我们可以开拓视觉理解的新领域,彻底改变行业,并创造创新的解决方案,增强我们对视觉世界的感知和互动。
胶质母细胞瘤(GBM)代表了由于其侵略性而引起的重大治疗挑战。肿瘤治疗场(TTFields)提出了一种有前途的GBM治疗方法。TTFIELD的主要机制,一种抗魔法作用,以及许多间接作用,包括增加的细胞膜渗透性,这与其他治疗方式相结合。当前的组合通常包括化学疗法,尤其是替莫唑胺(TMZ)的化学疗法,但是,新兴的数据表明,靶向疗法,放射疗法和免疫疗法的潜在协同作用。ttfields表现出最小的副作用,主要是与皮肤相关的,对疗法的合并没有明显的障碍。通过几项注册后研究证明了TTFields在GBM治疗中的有效性,主张持续研究以优化患者的总体生存(OS)和无进展生存期(PFS),而不是仅专注于生活质量。