我们在蒙特卡洛事件生成的生成对抗学习的背景下提出并评估了一种替代性量子发生器结构,用于模拟大型强子对撞机(LHC)的分类物理过程。我们通过在已知的非衍生分布生成的人工数据上实现量子网络来验证这种方法。然后将网络应用于特定LHC散射过程的蒙特卡洛生成的数据集。新的量子发生器体系结构可导致最先进的实现的一般化,即使使用浅深度网络,也可以实现较小的kullback-leibler dibergence。此外,即使接受了小型培训样本集训练,量子发生器也成功地学习了基础分布功能。这对于数据八月应用特别有趣。我们将这种新颖的方法部署在两个不同的量子硬件体系结构,被困的离子和超构造技术上,以测试其硬件独立的生存能力。
ATLAS:8 个实验室,120 名物理学家(包括博士后和博士生)Pixels、LAr、Tilecal、DAQ | +HGTD CMS:3 个实验室,75 名物理学家 Tracker、ECAL、Muon | +HGCAL + CC-IN2P3(计算中心,LHC T1)+ Omega(微电子)+ AICP(CERN 支持单位)
[5] D.M.sernd和al,ieee trans。苹果。Supercond。,34(3),(2024),Art。否。78000107,sernd and,2024,16(3),407; https://www.mdpi.com/2073-4360/407/4 https://www.mdpi.com.com/2073-4360/9/9/9] G. Arduini等, “ MCBC和MCBY LHC磁铁聚合物磁铁的学生产量,” EDMS No.2861509,2023年3月[10] C. Scheparion,D.M。Parth,J。Vielhauer,A。Gaarud。 https://indication.cert。
我们给出了色玻璃凝聚态有效理论中相对论重离子碰撞中初始色场的色玻璃能量动量张量的简明公式。我们采用具有非平凡纵向相关性的广义 McLerran-Venugopalan 模型,推导出弱场近似下对称核碰撞的 ð 3 + 1 Þ D 动态演化的简明表达式。利用蒙特卡罗积分,我们以前所未有的细节计算了 RHIC 和 LHC 能量下早期可观测量的非平凡快速度分布,包括横向能量密度和偏心率。对于具有破坏增强不变性的设置,我们仔细讨论了 Milne 框架原点的位置并解释了能量动量张量的分量。我们发现纵向流动与标准 Bjorken 流动在 ð 3 + 1 + D 情况下有所不同,并提供了这种影响的几何解释。此外,我们观察到快速度剖面侧面的普遍形状,无论碰撞能量如何,并且预测极限碎裂也应在 LHC 能量下保持。
1. 航线:a. 方向。Rwy 06 RHC;Rwy 18 LHC;Rwy 24 RHC;Rwy 28 RHC;Rwy 10 LHC;Rwy 36 RHC。b. 高度。(i)涡轮喷气式飞机 1000 英尺 QFE。(ii)活塞式飞机 800 英尺 QFE。(iii)低空 500 英尺 QFE。2. Twy L 仅供轻型单引擎飞机使用。3. MATZ:未经 Cranwell Ops 许可,直升机不得在 250 英尺 mnm 间隔距离以下飞行。(01400 267377)4. 所有跑道均不适合快速/重型喷气式飞机使用。 5. 潮湿天气过后,在 06/24 号跑道交叉口前,10 号跑道上会积聚水坑,造成滑水危险。6. 跑道管制员无法看到 06 号跑道顺风和最后进近区。7. 周三和周五 18:00 至黄昏,仅在英国夏令时和周六/周日 09:00 至黄昏期间进行模型 acft 飞行。
根据带电粒子在大型强子对撞机 (LHC) 等对撞机实验的探测器中留下的命中集合重建带电粒子的轨迹是一项具有挑战性的组合问题,并且计算量巨大。升级后的高亮度 LHC 的输出亮度增加了 10 倍,因此探测器环境将非常密集。传统技术重建粒子径迹所需的时间与径迹密度呈二次方以上关系。准确高效地将留在跟踪探测器中的命中集合分配给正确的粒子将是一个计算瓶颈,并促使人们研究可能的替代方法。本文提出了一种量子增强机器学习算法,该算法使用带有量子估计核的支持向量机 (SVM) 将一组三个命中(三元组)分类为属于或不属于同一条粒子径迹。然后将该算法的性能与完全经典的 SVM 进行比较。与经典算法相比,量子算法在探测器最内层方面的准确度有所提高,这对于轨迹重建的初始播种步骤至关重要。
暗物质(DM)的存在得到了观察结果的强烈支持[1-5],但其性质在很大程度上仍然未知。专用实验(例如,参考文献。[6-9])已直接搜索DM,但尚未检测到信号。粒子围栏是这项工作的补充工具。在CERN LHC进行了几次搜索DM模型,例如那些预测弱相互作用的质颗粒的模型[10-15]。基于撞机的长寿命颗粒(LLP)的搜索比以前探索的DM模型范围更大[16-26]。这些颗粒可以在检测器内部腐烂之前传播宏观距离,从而留下独特的特征。几种理论机制预测了DM状态的生产和衰减的抑制相空间,这将导致LHC的长期DM现象学[18]。此外,靶向LLP具有降低甚至消除大量标准模型(SM)背景的可观优势,从而提高了对低能最终状态粒子模型的灵敏度,理论上动机良好,但通常具有挑战性的签名[27-30]。
摘要:我们重新评估了不对称暗物质(ADM)的生存能力,该可行性主要与标准模型费米子相关。在有效的相互作用框架中处理这种DM粒子与夸克/lept子的相互作用,我们使用大型强子对撞机(LHC)(LHC)和单声音搜索在大型电子positron(LEP)Collider上得出更新的约束。我们仔细地对这些实验中使用的检测器进行了建模,发现这些探测器具有显着影响。合成了ADM的对称部分的有效an灭的约束以及其他观察性约束,以产生全局图像。与以前的工作一致,我们发现在1-100 GEV范围内的ADM受到了强烈的限制,因此排除了其最佳动机质量范围。但是,我们发现嗜血型ADM仍允许10 GEV DM,包括Collider的边界,直接检测和出色的加热。我们预测,电子峰值碰撞(FCC-EE)的未来圆形对撞机将几乎通过一个数量级来提高对DM-Lepton相互作用的敏感性。
加速器研发,并用足够的资源维持它。与国际合作伙伴以及其他社区(如光子和中子来源,融合能源和工业)的协同作用,应将路线图优先考虑该技术。本十年的可交付成果应及时定义,并在CERN,国家实验室和机构之间进行协调。•成功完成高光度LHC必须保留