房间:106 Spalding 实验室 检测和操纵压缩光用于量子计量和通信 Esme Knabe 导师:Maria Spiropulu 压缩光是一种亚泊松非经典光状态,在精密测量和量子通信等领域有广泛的应用。由于与现实世界系统的相关性,开发能够与现有光学和光子设备集成的压缩光过程至关重要。为此,该项目旨在展示使用桌面设备和集成光子学测量和操纵压缩光的相空间。这项工作的一些贡献包括但不限于压缩态的相位锁定以实现确定性相位旋转、通过将相干光与压缩光混合来产生位移压缩态、以及优化压缩光实际量子应用实验。通过量子电路假设搜索,使用量子生成对抗网络生成逼真的 LHC QCD 模拟 Yiyi Cai 导师:Maria Spiropulu、Jean-Roch Vlimant 和 Samantha Davis 经典生成模型已被证明有望成为替代生成模型,可以取代部分或全部对撞机数据的详细模拟链,尤其是在 LHC 中。由于初态希尔伯特空间大小的指数缩放和量子系统的内在随机性,量子-经典混合生成模型可以提供更高的精度和性能。这种方法的一个局限性是可以任意选择所用量子电路的假设。我们研究了量子-经典生成对抗模型的性能,以使用变分量子电路作为模型的生成部分来模拟 LHC 上强子喷流的特征,并进一步搜索电路假设空间以找到性能最佳的电路。我们对强子喷流数据集中量子-经典混合生成对抗模型的性能得出结论,并对此类方法在 LHC 上的可用性进行了展望。时间箱量子密钥分发密钥交换 Ismail Elmengad 导师:Maria Spiropulu 和 Anthony LaTorre 量子密钥分发 (QKD) 使双方 Alice 和 Bob 能够实现信息论安全通信。这意味着无论多少计算资源都无法让第三方访问 Alice 和 Bob 的通信。量子比特可以用几种方式编码。该项目将使用时间箱协议来交换量子比特。光子要么在时间基础上准备,它们落入早期或晚期时间箱,类似于经典信息中的 0 和 1,要么在相位基础上准备,这是早期和晚期状态的叠加。通过表征影响量子比特错误率 (QBER) 的各种因素,例如暗计数、脉冲宽度、QBER 稳定性,相位调制等。我们希望通过光纤介质实现任意长度的有效密钥交换。QKD 是通过光纤和视距自由空间环境进行安全通信的一个令人兴奋的前景。用于量子网络的时间箱编码光子量子比特的 Greenberger-Horne-Zeilinger (GHZ) 状态的生成 Nassim Tavakoli 导师:Maria Spiropulu、Samantha Davis、Raju Valivarthi 和 Nikolai Lauk 量子纠缠是量子信息应用(如量子计算、通信和计量)的重要资源,有望实现计算加速、信息论安全通信和增强的传感能力。该项目将重点研究由三个纠缠粒子组成的 GHZ 状态。我们旨在使用光纤耦合元件、体非线性和最先进的超导纳米线单光子探测器(SNSPD)生成时间箱量子比特的 GHZ 状态。纠缠光子可以通过自发参数下变频和连续波泵浦光后选择产生。这些“飞行量子比特”通过基于到达时间的时间箱技术传输编码的信息。这一演示将是迈向现实世界量子网络的重要一步,这是一种更有效地生成量子隐形传态所需状态的方法。
利益相关者是谁?谁受益?与政府组织、金融部门或大学等潜在创造者相比,科技公司会有其他动机和抱负。选择正确的目标将是决定性的。就 AGI 10 的创建和部署目标和适当策略达成共同协议,或者至少制定一个战略框架,不仅是可能的,而且是强烈建议的。有几个项目非常雄心勃勃、规模庞大,只有很大一部分工业化国家才能实现。想想国际空间站 ISS、欧洲核子研究中心最大、最强大的粒子加速器 LHC,或者世界上最大的聚变反应堆 ITER。它们都有共同点,都是和平主义性质、公布(几乎)所有发现,并且基础设施成本高昂。
摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
在基本粒子物理学的理论方面,该部门在弦理论中都有存在,以及LHC和未来山利区的标准模型之外的HADRONIC物理,中微子物理和物理学。该部门一直在寻求在天体物理学中成长,该主题在M.Sc中受欢迎。自2008年以来的学生。最终在2016年之后实现了这种可能性,因为可以建立一个主要是从事理论工作的小天体物理学 - 重力亚组。Archana Pai是该论文的共同作者,宣布了Ligo实验室的第一次发现引力波,这是2017年诺贝尔奖中引用的一篇论文。在实验方面,已经提议将基于卫星的X射线探测器实验室达克沙(Daksha)成为ISRO,成为国际财团增长的一部分。
随着高能高亮度对撞机 [1] 的出现,尤其是 1994 年 6 月 LHC 建造计划的批准 [2],显然探测器上的电子系统需要具有抗辐射能力,才能在所需的 10 年实验寿命内生存 [3]。航天工业 [4] 所采用的方法是依靠工业合格的抗辐射商用现货元器件 (COTS) 或合格的消费电子元器件,这显然不适合高能物理 (HEP) 项目,因为高能物理项目受到的辐射剂量远远超过太空中的辐射剂量,而元器件数量众多意味着系统成本高昂。毋庸置疑,实施实验所需的大多数功能在消费市场上是找不到的,尽管数据通信系统肯定不是这种情况,尽管工业界无法提供所需的抗辐射元器件,但已经领先于 HEP 的需求 [5, 6]。
人类空间探索的新阶段即将到来。从国际空间站到NASA的猎户座航天器,TimePix已成为几个人类太空飞行任务的一部分。由CERN托管Medipix2协作开发,TimePix检测器非常小但功能强大。在过去的十年中,它们已用于各种空间应用中:从开放空间中辐射和宇宙射线的可视化到宇航员的可视化。因此,他们在国际空间站上,并被委托用于NASA的月球勘探计划Artemis。芯片的技术类似于在CERN的LHC实验中用于跟踪粒子轨迹的技术。它能够测量电离α,β和伽马辐射以及重离子;它还能够表征单个电离颗粒的痕迹,以便推导类型和能量。哪些太空任务?
长期以来,各种理论模型都预测了分子态,特别是在单玻色子交换模型中预测的 DD ∗ 同标量轴矢量分子态。在本文中,我们研究了高斯展开法中的 DDD ∗ 系统,其 DD ∗ 相互作用源自单玻色子交换模型,并受到 T cc 相对于 D ∗ + D 0 阈值的 273 ± 63 keV 的精确结合能约束。我们证明了 DDD ∗ 态的存在,其结合能为几百 keV,自旋宇称为 1 − 。其主要衰变模式是 DDD π 和 DDD γ 。这种状态的存在原则上可以通过即将发布的 LHC 数据得到证实,并将明确地确定 T + cc 态以及许多类似奇异状态的性质,从而加深我们对非微扰强相互作用的理解。
粒子物理学是一门科学分支,旨在通过研究物质和力的最基本成分来了解自然界的基本规律。这可以在受控环境中使用粒子加速器(如大型强子对撞机 (LHC))或在不受控环境中(如宇宙中的灾难性事件)完成。粒子物理学的标准模型是数十年理论工作和实验的成果。虽然它是一种非常成功的有效理论,但它不允许重力的积分,并且已知有局限性。粒子物理学的实验需要大量复杂的数据集,这对数据处理和分析提出了特殊的挑战。最近,机器学习在物理科学中发挥了重要作用。特别是,我们观察到深度学习在粒子物理学和天体物理学的各种问题中的应用越来越多。超越典型的经典
大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。