发射二极管发射二极管不会发出IR,也没有紫外线,它们的频谱完全在可见的部分中。,但LED不是冷,所有能量损失都是热损失。本文的目的是证明可重复使用热损失以通过热电模块产生光的可行性。纸张都用于冷却[1-6]。在作者的知识中,这是第一次使用热损耗来通过使用毛皮模块产生光线来提高高功率LED照明系统的全球效率。简介:发光二极管(LED)是市场上最有效的光源之一。尽管它们比传统的光源高得多,但它们将消耗的电能的大约60%至70%转化为热量。LED的功能是产生光。因此,每次转化为光线的损失都必须提高系统的效率。为了证明这个概念,我们选择了高功率LED(Bridgelux W3500)。在对该芯片板进行完整的热建模后,导致评估热损耗并通过Peltier模块预测可用的功率后,实现了一个完整而简单的电子系统来验证预测。热建模和COMSOL模拟:
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
DNA分子上的数据存储是存档大量数据的有前途的方法[1] - [4]。在经典的DNA存储系统中,将二进制信息编码为由四个DNA碱基{a,c,g,t}组成的序列。编码序列用于使用DNA合成的生化过程生成称为链的DNA分子。合成的链储存在管中。要检索二进制信息,必须通过DNA测序读取链,并将解码回到二进制表示中。合成过程和测序程序是容易出错的,并且随着DNA的自然降解,它们会向DNA链引入错误。为了确保数据可靠性,必须通过算法和错误校正代码(ECC)来纠正错误。最近,为了允许更高的潜在信息能力[5],[6]引入了复合DNA合成方法。在此方法中,使用标准DNA合成方法创建的多个副本可用于创建复合DNA符号,该符号由DNA碱基的混合物及其比率定义,其比率及其特定位置。通过定义不同的混合物和比率,可以将字母扩展到具有4个以上的符号。更正式地,可以将特定位置的复合DNA符号抽象为概率的四重奏{p a,p c,p g,p g,p t},其中p x,0≤px≤1是基本x∈{a,c,g,t}的底数。因此,要识别复合符号,需要对多个读数进行测序,然后在每个位置估算p a,p c,p g,p t。由于该方法中字母符号的独特结构,基本级别的误差可以轻松更改观察到的碱基的混合物及其比率,因此更改了观察到的复合符号。此外,在此设置中,合成过程的固有冗余性(即,每股多个副本)不能直接用于
摘要:在本项目中,我们使用贝叶斯动态模型组合对美国各州的野火损失进行建模和预测。具体来说,野火频率由贝叶斯多尺度动态计数混合模型 (DCMM) 建模,该模型能够捕捉野火数据的许多风格化特征,包括零膨胀、与泊松分布相比的过度分散以及随时间变化的模式。此外,DCMM 能够结合不同州的空间依赖性,从而提高各个州的预测性能,尤其是历史频率较低的州。然后,我们应用未来野火损失的预测分布来为具有不同特征的野火灾难 (CAT) 债券定价,并评估它们对不同州保险公司的对冲效果。我们发现,尽管使用 CAT 债券作为对冲工具可能会因债券保费而略微增加保险组合的预期负债,但该策略可以大大降低波动风险和尾部风险。因此,我们得出结论,CAT 债券是保险公司降低风险的宝贵工具。最后,对于指数型 CAT 债券,其收益与比保险公司经营范围更大的野火损失挂钩,其对冲效率仍然可接受。因此,对于保险公司,尤其是那些在野火损失较少但波动较大的地区经营的保险公司来说,发行指数型 CAT 债券可能是有利的,这种债券可能比直接以负债为基础的赔偿债券更便宜,但流动性更强。
演示包括一个智能软开路点 (sSOP),其中轨道转换器连接到轨道网络,电网转换器连接到本地低压电网,ESS 电池转换器连接到电池存储系统。在演示期间,项目团队进行了测量以评估系统的运行情况。团队捕获了轨道转换器的输入电压、电网转换器的输入直流电流 (Ig DC) 和电池转换器的输入电流 (Ib DC)。测试条件设置为电源轨道参考高达 50kW,电网参考功率高达 10KW,并选择轨道电压的设定点为 652V。
如今,人们对设备的依赖程度比以往任何时候都高。随着智能手机、平板电脑和笔记本电脑等设备的便携性,它们占据了我们日常生活中越来越多的空间和时间。由于可以无缝、即时地访问全球其他人和内容,因此持续、无限和无边界的通信、连接和任务已成为一种生活标准。但这对功率半导体行业有何影响?这些便携式设备依靠电池供电,因此,使用它们的基本前提是拥有充电器或适配器(取决于额定功率)来为它们充电。这就是功率微电子发挥作用的地方。在确定需要充电器/适配器来为我们的(智能)设备的电池充电之后,下一个问题是:我们愿意花多少时间充电?答案很明显:尽可能少。这正是快速充电越来越受欢迎的原因。但只有通过增加充电器/适配器的功率传输能力才能实现快速充电。除了充电时间,充电器的重量也是一个重要的考虑因素(越轻越好,因为我们通常必须随身携带)。这就是为什么需要功率密度更高的充电器/适配器的原因,它们可以在不增加物理尺寸或重量的情况下提供更多功率。
摘要 非技术损失 (NTL) 是许多公用事业公司试图解决的问题,通常使用黑盒监督分类算法。一般来说,这种方法取得了良好的效果。然而,在实践中,NTL 检测面临着技术、经济和透明度方面的挑战,这些挑战无法轻易解决,并且会损害预测的质量和公平性。在这项工作中,我们将这些问题置于为一家国际公用事业公司建立的 NTL 检测系统中。我们解释了如何通过从分类转向回归系统并引入解释技术来提高其准确性和理解力,从而缓解这些问题。正如我们在本研究中所展示的,回归方法可以成为缓解这些技术问题的一个很好的选择,并且可以进行调整以捕捉最引人注目的 NTL 案例。此外,可解释的人工智能(通过 Shapley 值)使我们能够在基准测试之外验证回归方法在这种背景下的正确性,并大大提高我们系统的透明度。
摘要 :青贮复水玉米粒 (RC) 已被用于提高营养价值和促进农场储存。本研究评估了壳聚糖和乳酸微生物接种剂对青贮复水玉米微生物学、发酵特性和损失、化学成分、体外降解和有氧稳定性的影响。采用完全随机设计,使用了 40 个实验筒仓来评估以下处理:1) 对照 (CON):不含添加剂的 RC 青贮饲料;2) 壳聚糖 (CHI):含 6 g/kg 干物质 (DM) 壳聚糖的 RC 青贮饲料;3) 布赫纳乳杆菌 (LB):每克鲜重用 5 × 10 5 个 L. buchneri 菌落形成单位 (CFU) 的 RC 青贮饲料; 4) 植物乳杆菌和乳酸干酪杆菌 (LPPA):RC 每克鲜重青贮饲料中接种 1.6 × 10 5 个植物乳杆菌和 1.6 × 10 5 个乳酸干酪杆菌。添加剂增加了乳酸菌数量以及乳酸和丙酸浓度,减少了霉菌和酵母数量以及气体和发酵损失,提高了干物质回收率。与接种微生物的青贮饲料相比,CHI 青贮饲料的 pH 值、氨氮浓度和发酵损失均较低,而乙酸浓度较高。此外,CHI 和 LB 降低了青贮饲料有氧暴露后的 pH 值和温度。虽然各种处理对 RC 的营养价值影响不大,但 CHI 提高了青贮饲料的有氧稳定性,减少了发酵损失。 关键词 : 发酵概况、仁粒青贮饲料、乳酸菌、L. buchneri。
cs 2 agbibr 6(CABB)被认为是铅卤化物钙钛矿的一种有希望的无毒替代品。但是,低电荷载体收集效率仍然是将该材料纳入光电应用中的障碍。在这项工作中,我们使用稳态和瞬态吸收和反射光谱研究CABB薄膜的光电特性。我们发现,由于薄膜内部多次反射,这种薄膜上的光学测量结果被扭曲。此外,我们使用微秒瞬时吸收光谱和时间分辨的微波电导率测量来讨论这些薄膜电导率损失背后的途径。我们证明,载体损失和定位的综合作用导致CABB薄膜的电导率损失。此外,我们发现电荷载体扩散长度和晶粒尺寸的数量级相同。这表明该材料的表面是电荷载体损失的重要原因。