Cre-loxp介导的遗传谱系追踪系统对于构建单细胞后代或细胞种群的命运图是必不可少的。了解心脏祖细胞的结构层次结构促进了心脏发育中的细胞命运和起源问题。基于前瞻性Cre-loxP的谱系 - 追踪系统已被用于精确分析心内膜细胞(ECS),心外膜细胞和心肌细胞的命运确定和发育特征。因此,新兴的谱系追踪技术推进了心血管相关细胞可塑性的研究。在这篇综述中,我们说明了新兴CRE-LOXP的原理和方法,用于基于心脏中不同细胞谱系的轨迹监测的轨迹监测。使用遗传谱系追踪技术对单细胞后代的分化过程的全面证明为心脏发展和稳态做出了杰出的贡献,为先天性和心血管疾病(CVD)的组织再生提供了新的治疗策略。
摘要:CRISPR 相关蛋白(如 Cas9)的开发提高了基因组编辑的可及性和易用性。然而,需要额外的工具来量化和识别活体动物中成功的基因组编辑事件。我们开发了一种快速量化和监测活体动物中基因编辑活动的方法,该方法还有助于共聚焦显微镜和核苷酸水平分析。在这里,我们报告了一种新的 CRISPR“指纹识别”方法,用于激活小鼠中的荧光素酶和荧光蛋白作为基因编辑的功能。该系统基于我们之前的 cre 重组酶 (cre) 检测系统的经验,专为能够靶向 lox P 的 Cas 编辑器而设计,包括 SaCas9 和 ErCas12a 的 gRNA。这些 CRISPR 专门在 lox P 内切割,这种方法不同于以前靶向相邻终止序列的体内基因编辑活动检测技术。在这种传感器范例中,在肌肉或静脉内流体动力质粒注射后,在活体 cre 报告小鼠(FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J 和 Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J,本文中将称为 LSL-luciferase 和 mT/mG)中非侵入性地监测 CRISPR 活性,证明了其在两种不同器官系统中的实用性。通过共聚焦显微镜在特定组织的细胞水平上检查了相同的基因组编辑事件,以确定成功基因组编辑细胞的身份和频率。此外,SaCas9 诱导的靶向编辑效率与 cre 相当,证明了在整个动物中具有高效的传递和活性。这项研究建立了基因组编辑工具和模型,以非侵入性方式追踪体内 CRISPR 编辑并识别目标细胞。这种方法还使之前生成的数千种 lox P 动物模型中的任何一种都具有类似的实用性。
抽象的遗传修饰的微藻被认为是生物能源和重组蛋白质产生的有用工具。然而,微藻核基因组中转基因的随机整合易受异源基因表达的基因沉默。在这里,我们试图使用CRE/ LOXP重组系统进行稳定的转基因表达,将靶向基因整合到雷目层的预定的核基因组位点中。我们构建了一个表达载体质粒编码报告基因(Zeocin耐药基因和绿色荧光蛋白基因; ZEO-2A-GFP)和突变的LOXP来产生创建者细胞。构建了编码IFNα-4的供体载体和抗性霉素的抗性基因,构造了相应突变的LOXP S,并与CRE表达载体一起构建并引入创始人细胞。通过计算抗霉素抗性菌落的数量来确定供体载体与CRE表达载体的最佳比率。对于已建立的克隆,使用各种特定引物集通过基因组PCR确认了靶向积分。供体载体中的靶基因可以使用CRE/ LOXP系统整合到Reinhardtii的预期基因组位点中。rt-PCR表明,IFNα-4在测试的五个独立的转基因细胞系中表达。该结果表明,基于CRE的细胞工程是一种产生表达外源基因的智能微藻的有前途的方法。