我们对研究的研究进行了系统的综述,该研究重点是自动预测对阿尔茨海默氏病(AD)痴呆症的轻度认知障碍进展,以及对影响性能的方法论选择的定量分析。此评论包括172篇文章,从中提取了234篇实验。对于每个人,我们报告了使用的数据集,特征类型,算法类型,performence和潜在的方法论问题。使用多元混合效果线性回归评估了这些特征对性能的影响。我们发现,使用认知,流通氧化葡萄糖 - 螺质发射层造影术或磁性脑电图和磁性变量显着提高了预测性能,与不包括其他方式相比,预测性能显着提高,尤其是其他模态,尤其是T1磁性音乐成像,但表明了一个明显的图表。认知评估的良好表现质疑成像的广泛使用,以预测AD的发展,并提倡探索进一步的域名认知评估。我们还识别了几个方法论问题,包括缺少测试集,或在几乎四分之一论文中使用其用于特征选择或参数调整的使用。在15%的研究中发现的其他问题对该方法与临床实践的相关性产生了怀疑。我们还强调,短期预测可能不会比预测受试者保持稳定
摘要:神经语音解码驱动的脑机接口 (BCI) 或语音 BCI 是一种探索闭锁症 (完全瘫痪但有意识) 患者交流恢复的新范例。语音 BCI 旨在将神经信号直接转换为文本或语音,这有可能比当前的 BCI 实现更高的通信速率。尽管最近的进展已经证明了语音 BCI 的潜力,无论是侵入式还是非侵入式神经信号,但迄今为止开发的大多数系统仍然假设知道连续神经记录中语音话语的开始和结束。缺乏实时语音/语音活动检测 (VAD) 是神经语音解码未来应用的当前障碍,其中 BCI 用户可以与其他说话者进行连续对话。为了解决这个问题,在本研究中,我们尝试直接从使用脑磁图 (MEG) 记录的神经信号中自动检测语音/语音活动。首先,我们使用支持向量机 (SVM) 对神经信号中的语音前、语音和语音后整个片段进行分类。其次,对于连续预测,我们使用长短期记忆循环神经网络 (LSTM-RNN) 通过其顺序模式学习机制有效地解码每个时间点的语音活动。实验结果表明,直接从非侵入性神经信号进行实时 VAD 的可能性约为 88%。
网络是捕获世界复杂性的有用数学工具。在先前的行为研究中,我们表明人类成年人对听觉序列的高级网络结构敏感,即使在提供了全部信息。基于与相邻元素和非附近元素之间的过渡概率与内存衰减之间的过渡概率的集成,最好通过与关联学习原理兼容的数学模型来解释其性能。在本研究中,我们通过磁脑电图(MEG)探讨了该假设的神经相关性。参与者(n = 23,16位女性)被动地听取了在稀疏的社区网络结构中组织的色调序列,其中包括两个社区。在大脑对具有相似过渡概率的音调过渡的反应中观察到了早期差异(〜150 ms),但在社区内或之间发生了 - 发生。此结果意味着序列结构的快速自动编码。使用时间分辨解码,我们估计了每种音调表示的持续时间和重叠。解码性能表现出指数衰减,从而在连续音调的表示之间显着重叠。基于这种扩展的衰减预示,我们估计了每个过渡的长摩根关联学习新颖性指数,并发现该度量与MEG信号的相关性。总体而言,我们的研究阐明了人类对网络结构敏感性的神经机制,并突出了HEBBIAN样机制在支持各种时间尺度学习中的潜在作用。
神经影像学的抽象进步是理想的,可以促进细胞遗传学和神经退行性分子生物学在改善诊断,预防和治疗痴呆症的过程中的转化。新的正电子发射断层扫描(PET)配体可以安全可靠地在体内量化神经病理学,炎症和代谢,以检查人类疾病的机制并支持临床试验。基于MRI的成像和神经生理学的发展提供了脑功能和连通性的互补定量测定,用于直接检验人类病理生理学的假设。MRI的进步还改善了血管风险和合并症的定量成像。与大型数据集,开放数据和人工智能分析方法结合使用,将新的基于信息学的方法设置为实现准确的诊断,预测和治疗方法的精确推论,这些推论有可能为痴呆提供精确的药物。在这里,我们通过使用批判性评估的工作例子来表明,神经影像学如何弥合分子生物学,神经回路和支撑复杂行为的核心系统的动力学之间的差距。我们超越了通常在临床护理中使用的传统结构成像,其中包括超高野外MRI(7T MRI),磁性摄影和带有新型配体的PET。我们说明了它们的潜力是安全,强大且足够可扩展的,可以在实验医学研究和临床试验中可行。在多模式研究中合并时,它们特别有用,并基于模型的分析来检验精确定义的假设。
磁脑电图(MEG)和脑电图(EEG)数据的多变量模式分析(MVPA)是了解大脑如何代表和区分不同刺激的宝贵工具。识别刺激的时空特征通常是这些分析的关键输出。此类分析主要使用线性,成对的滑动窗口解码模型进行。这些允许相对易于解释,例如通过估计解码准确性的时间课,但解码性能有限。另一方面,通常用于大脑计算机接口(BCI)应用程序的完整时期多类解码模型可以提供更好的解码性能。然而,此类模型的解释方法已经设计了较少的类别。在本文中,我们提出了一种将多类,完整的时期解码模型与监督维度降低相结合的方法,同时仍然能够使用置换功能重要性来揭示时空和光谱特征的贡献。至关重要的是,我们引入了一种进行监督维度降低的方法,以优化分类任务的神经网络中的输入特征,从而实质上改善了性能。我们使用图像演示文稿在3个不同的多类任务-MEG数据集上演示了该方法。我们的结果表明,该方法始终达到比滑动窗口解码器的峰精度更高的精度,同时估计MEG信号中相关的时空特征。
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。
目的:通过分析脑活动来区分帕金森病静止性震颤和不同的自主手部运动。方法:我们重新分析了 6 名帕金森病患者的丘脑底核的脑磁图和局部场电位记录。数据是在停用多巴胺药物(Med Off)和服用左旋多巴(Med On)后获得的。使用梯度提升树学习,我们将时间段分类为震颤、握拳、前臂伸展或无震颤静止。结果:单独的丘脑底核活动不足以区分四种不同的运动状态(平衡准确度平均值:38%,标准差:7%)。相比之下,皮质和丘脑底核特征的组合可以实现更准确的分类(平衡准确度平均值:75%,标准差:17%)。与仅基于丘脑底活动的分类相比,添加单个皮质区域平均可将平衡准确度提高 17%。在大多数患者中,信息量最大的皮质区域是感觉运动皮质区域。Med On 和 Med Off 下的解码性能相似。结论:只要除了丘脑底活动外还监测皮质信号,电生理记录就可以区分几种运动状态。意义:通过结合皮质记录、皮质下记录和机器学习,自适应深部脑刺激系统可能能够特异性地检测震颤并对几种运动状态做出充分反应。2023 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
大脑功能连通性与结构连通性之间的关系引起了神经科学界的广泛关注,通常使用数学建模推断出。在许多建模方法中,光谱图模型(SGM)具有独特性,因为它具有大脑振荡的宽带频率光谱的封闭形式解,仅需要全球生物物理解释的参数。虽然SGM在参数方面是简单的,但SGM参数的确定是非平凡的。先前在SGM上的工作通过计算密集型退火算法确定参数,该算法仅提供一个点估计值,而没有置信区间的参数估计。为了填补此空白,我们结合了基于仿真的推理(SBI)算法,并开发了一种贝叶斯程序来推断SGM参数的后验分布。此外,使用SBI大大减轻了推断SGM参数的计算负担。我们评估了健康受试者的静止状态磁脑摄影记录上提出的SBI-SGM框架,并表明所提出的程序在恢复功率光谱和Alpha频带的空间分布方面具有与退火算法相似的性能。此外,我们还分析了参数之间的相关性及其与后验分布之间的不确定性,而后验分布无法通过退火推断进行。这些分析对SGM生物物理参数之间的相互作用提供了更丰富的理解。通常,基于模拟的贝叶斯推理的使用可以实现生成模型参数不确定性的强大而有效的计算,并可能为在临床翻译应用中使用生成模型铺平道路。
脑机接口 (BCI) 不仅可用于控制外部设备,还有望为研究大脑的工作提供新工具。在本研究中,我们研究了通过改变隐蔽注意力来调节大脑活动是否可以用作 BCI 的连续控制信号。隐蔽注意力是指在不改变注视方向的情况下将精神集中在外围感官刺激上的行为。当受试者在保持注视的同时隐蔽地注意移动的线索时,使用脑磁图记录了受试者的持续大脑活动。仅基于后阿尔法功率,就可以使用循环回归恢复受试者的注意方向。结果表明,在我们最好的受试者中,注意力角度可以用平均绝对偏差 510 来预测。对受试者进行平均,平均偏差约为 70°。在信息传输速率方面,用于恢复注意力方向的最佳数据长度被发现为 1700 毫秒;这导致最佳受试者的平均绝对偏差为 60°。结果是在没有任何受试者特定特征选择的情况下获得的,并且不需要事先进行受试者训练。我们的研究结果表明,由于内隐注意力的方向而引起的后阿尔法活动调节具有作为 BCI 环境中持续控制的控制信号的潜力。我们的方法将有多种应用,包括脑控计算机鼠标和改进的神经反馈方法,这些方法可以直接训练受试者调节后阿尔法活动的能力。
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。