摘要:目前,在数以百万计的 Android 应用程序中,存在着许多恶意程序,对人们的安全和隐私构成重大威胁。因此,开发检测 Android 恶意软件的方法势在必行。最近开发的恶意软件检测方法通常依赖于各种功能,例如应用程序编程接口 (API) 序列、图像和权限,从而忽略了源代码和相关注释的重要性,而这些注释通常不包含在恶意软件中。因此,我们提出了 Android-SEM,这是一种基于迁移学习的 Android 源代码语义增强模型。我们提出的模型建立在 Transformer 架构之上,以实现从恶意软件源代码生成代码注释的预训练框架。使用生成对抗网络优化预训练框架的性能。我们提出的模型依赖于一种新颖的基于回归模型的过滤器来保留高质量的注释和源代码,以进行与语义增强相关的特征融合。与传统方法相反,我们创造性地结合了量子支持向量机 (QSVM) 来对恶意 Android 代码进行分类,结合了量子机器学习和经典深度学习模型。结果证明,Android-SEM 在恶意软件检测和恶意软件分类方面的准确率分别达到 99.55% 和 99.01%。
摘要 - 机器学习的新兴领域(ML)和量子机器学习(QML)在解决各个领域的复杂问题方面具有巨大的潜力。但是,在将这些系统部署在安全敏感的应用中时,它们对对抗性攻击的敏感性会引起人们的关注。在这项研究中,我们对ML和QML模型的脆弱性,特别是常规神经网络(NN)和量子神经网络(QNN)进行了比较分析,以使用恶意软件数据集进行对抗攻击。我们利用一个称为夹具的软件供应链攻击数据集,并为QNN和NN开发了两个不同的模型,并采用Pennylane实现了Quantylane,而Tensorflow和Keras进行了传统实现。我们的方法涉及通过将随机噪声引入数据集的一小部分来制作对抗样本,并使用准确性,精度,召回和F1得分指标评估模型性能的影响。根据我们的观察结果,ML和QML模型均表现出对对抗攻击的脆弱性。与攻击后的NN相比,QNN的准确性降低了,但在精确和召回方面表现出更好的性能,表明在对抗条件下检测真正的阳性时的弹性更高。我们还发现,为一种模型类型制定的对抗样品会损害另一种模型的性能,从而强调了对强大的防御机制的需求。我们的研究是未来研究的基础,着重于增强ML和QML模型(尤其是QNN)的安全性和弹性,鉴于其最近的进步。面对对抗性攻击,将进行更广泛的实验,以更好地了解这两种模型的性能和鲁棒性。
五年前,恶意软件分类论文中近乎完美的𝐹 1 分数趋势引发了人们的疑问:Android 恶意软件分类是否已解决。恶意软件分类实际上并非已解决的问题,近乎完美的性能是时空偏差的结果。Tesseract 的开发旨在允许对恶意软件分类器进行不受空间和时间偏差影响的实际评估。Tesseract 发布后,它成为如何进行公平恶意软件分类评估的基准,影响了后续论文的实验设计,迄今为止已有 415 次引用。Tesseract 被实现为一个 Python 库,旨在轻松与常见的 ML 工作流程集成。Tesseract 的设计深受流行的机器学习算法的启发,并且与之完全兼容。
Ultralight contains the following key features: • Detects and blocks exploits, common malware, and other identifiers in any hostile content sent by attacker • Detects and blocks exploitive behavior occurring in an application designed to open potentially harmful content (PDF reader, office soft- ware, Java runtime, JavaScript interpreter, etc.)• Detects and blocks suspicious or malicious behavior both in running applications and in the system itself • Prevents compromised applications from performing hostile actions, such as dropping malware onto a system • Detects and blocks malware with a traditional file scanning engine • Detects and blocks memory-resident malware • Removes or quarantines malicious artifacts from the system • Disinfects objects that have been modified by file infectors • Utilizes WithSecure's™ Security Cloud to detect anomalies in files or file metadata • Sends suspicious executable files to WithSecure's™ Security Cloud for extended analysis • Prevents malware from contacting a C&C server • Uses automatic forensics and computer ecosystem anomaly detection to detect malware that other techniques are unable to prevent or detect
摘要。这项研究研究了使用静态和动态分析方法来检测和分类的机器学习技术,即随机森林,人工神经网络和卷积神经网络的有效性。通过将恶意软件分类为广告软件,勒索软件,索引软件和SMS恶意软件来利用CICINVESANDMAL2019数据集,多类分类。静态分析检查了权限和意图,而动态分析则集中于API调用和网络流。使用准确性,召回,精度,F1分数,训练时间和测试时间评估模型的性能。结果表明,在静态和动态分析中,随机森林比深度学习模型的优越性,静态分析的性能比动态分析更好。这项研究通过提供对不同机器学习算法和分析方法的有效性的见解来为Android恶意软件检测的领域做出了贡献,从而突出了随机森林的潜力,以实现有效,准确的恶意软件多类分类。
最近,Android用户的数量已大大增加,这使Android成为攻击者发起恶意活动的目标。恶意软件或恶意代码通常嵌入到Android应用中,以访问用户的设备并检索个人数据。研究人员探索了各种方法来减轻Android恶意软件的传播。此外,Android恶意软件数据集具有巨大的尺寸,并具有数百个功能。选择适当的特征选择方法是产生可靠检测模型的挑战之一。本文提出了一种使用增益比选择和一个集成机器学习算法来检测Android恶意软件并将其分为五个类别的方法。通过增益比计算方法根据其重要性值降低的特征。然后,被认为必要的功能包含在结合许多模型的分类过程中。使用Cicmaldroid2020(加拿大网络安全研究所Android 2020)的实验数据集表明,所提出的方法可以改善检测性能。增益比的特征选择提高了几种机器学习分类算法的检测准确性,幼稚的贝叶斯的2.59%,最近的邻居和2.29%的支持向量机。因此,随机森林,额外树木和最近邻居的结合机器学习模型取得了最高的性能,精度为94.57%,精度分数为94.71%。
静态和动态恶意软件分析技术;包装,解开包装,沙箱可执行文件,在VM中的运行时分析;高级静态分析 - 分析恶意窗口程序;高级动态分析 - 调试,与Windbg进行内核调试;动态数据流跟踪(DFT);过程注入,API钩,DLL注入;反射性DLL加载,动态API加载,64位恶意软件,无文件恶意软件; AV混淆技术;秘密恶意软件启动;数据编码;以恶意软件为中心的网络签名;外壳分析;逆转固件; Android,iOS架构; Android反向工程:Android应用程序体系结构的理解;逆转应用程序的工具(JADAX,APKTOOL,BACKSMALI,DEXTOJAR); Android应用的混淆技术,Deobfuscation Techniques; SMALI代码理解,代码注入技术; iOS应用程序安全; iOS安全机制和安全体系结构;安全启动链,数据加密和网络安全; iOS文件系统隔离,应用程序沙盒,iOS设备体系结构;使用Cuckoo,Yara的自动恶意软件分析;恶意软件作为服务。
•AI预防威胁性预防,一种智能而快速的恶意软件检测和预防解决方案,可以在用户连接的任何地方保护您的网络。此解决方案利用基于流动的防病毒软件和基于机器学习的零日威胁检测,以保护用户免受恶意软件攻击并防止系统中的恶意软件传播。请参阅基于流动的防病毒策略和配置基于机器学习的威胁检测。
计算机病毒和恶意软件,John Aycock,Springer,2006年。我们讨论的许多应用程序与恶意软件有关。Aycock的书很容易阅读,尽管既旧),但它为恶意软件研究提供了良好的基础。信息安全:原理和实践,第三版,Mark Stamp,Wiley 2021。如果您没有服用CS 265,则应该这样做。无论如何,如果您在本课程中对与安全相关的主题有疑问,则可以参考这本高推荐的书。开放恶意软件(在http://www.offensivecomputing.net/)中包括大量实时恶意软件样本。VX天堂(在http://vx.netlux.org/)是有关病毒信息的“黑客”类型的来源。恶意软件样本也可用。计算机病毒学和黑客技术杂志(在http://www.springer.com/computer/journal/11416)是一本杂志,主要集中在特定于恶意软件的研究论文上。也有一些良好的会议专注于信息安全性的恶意软件和/或机器学习应用程序。最近的Masters项目报告(http://www.cs.sjsu.edu/~stamp/cv/cv/mss.html#masters)。这些项目中的大多数都涉及机器学习对信息安全性恶意软件或其他主题的应用。
摘要:随着信息技术的快速发展,恶意软件已成为高级网络安全威胁,针对计算机系统,智能设备和大规模网络实时。传统检测方法通常由于准确性,适应性和响应时间的限制而无法识别出新的恶意软件变体。本文对实时恶意软件检测的机器学习算法进行了全面综述,并根据其方法和有效性对现有方法进行了分类。该研究研究了最新进步,并评估了各种机器学习技术在以最小的假阳性和提高可伸缩性检测恶意软件时的性能。此外,还讨论了关键挑战,例如对抗性攻击,计算开销和实时处理约束,以及潜在的解决方案以增强检测能力。进行了经验评估,以评估不同机器学习模型的有效性,为实时恶意软件检测的未来研究提供了见解。
