激光处理技术可以精确制造与微观,微力学和生物医学中广泛应用的任意结构和设备。但是,其采用受到光学系统的较大尺寸,复杂性,高成本和低灵活性的限制。metasurfaces可以对光场进行精确的多维控制,与紧凑,高性能光学系统的发展趋势很好地保持一致。在这里,我们回顾了一些有关跨境处理技术应用程序应用的最新研究,包括3D纳米光刻,直接激光写作和激光切割。Metasurfaces提供了一个具有出色性能的集成运营平台,并准备破坏常规激光处理工作流程。这种组合具有巨大的成本效率和巨大的开发潜力,并在成像,光学存储,高级传感和轨道上的空间诸如轨道制造等领域中采用了有希望的应用。
摘要 — 本文介绍了用于 Ka 波段单脉冲雷达跟踪的调制超表面天线的设计、制造和测试。天线由圆形、薄接地介电层组成,该介电层由形状和大小经过调制的金属贴片纹理印刷而成。贴片层可以建模为空间可变的电容阻抗片,它与接地平板贡献一起提供整体调制电感边界条件。天线孔径被分成四个相同的角象限,每个角象限在由单个单极子发射器激发时都会辐射独立的宽边波束。四个发射器中的每一个都会激发 TM 圆柱形表面波 (SW),该波被超表面逐渐转换为漏波 (LW)。通过适当设计超表面调制,4 个子孔径被虚拟分开。为此,校准了 LW 衰减常数以充分释放每个单独的 SW,从而防止相邻区域之间的相互作用。因此,印刷结构不受任何物理分离的限制,而仅受等效边界条件的连续变化的限制。通过将源激励与简单的相位方案相结合,可获得单脉冲型线性偏振光束。值得注意的是,该解决方案不会影响结构的整体轻便性、低轮廓、馈源简单性和低制造成本,这相对于更传统的基于波导的解决方案具有固有优势。
引言光子跨国,工程金属或介电结构的二维超薄阵列是多功能的光学组合,实现了对局部相,振幅,振幅和极化的电磁场操纵的能力(1-4)。这些功能是在古典光学方面的各种应用程序中开发的。量子纠缠是许多应用的量子光学源的重要来源,例如量子密码学(5,6),传送(7-9),超分分辨率计量学(10)和量子成像(11)。特别是在量子成像领域,可以利用光子对之间的空间强度相关性超过成像的经典限制(12-14)。此外,用预示的单光子照亮量子图像处理技术的引入揭示了光子限制成像的优势抗抗抑制能力(15)。最近的努力表明,将元图与纠缠光子相结合的趋势是量子光学元件中各种应用应用的趋势(16-20)。在另一种情况下,边缘检测是图像处理中最常见的操作之一,它试图定义图像中区域之间的边界。它是机器和计算机视觉领域(21)的基本工具,是医学图像操作中自动特征的预处理步骤(22,23),也是自动驾驶汽车的关键组成部分(24,25)。与传统数字方法相比,模拟技术具有高速和节能的优势。由于量子纠缠在测量之前拥有无法区分的信息和Instanta-因此,已经提出了各种模拟边缘检测方法(26-35),包括通过我们的超材料和超额叶(36 - 39)。然而,在量子光学领域从未证明基于紧凑的跨表面的边缘检测。
引言光子跨国,工程金属或介电结构的二维超薄阵列是多功能的光学组合,实现了对局部相,振幅,振幅和极化的电磁场操纵的能力(1-4)。这些功能是在古典光学方面的各种应用程序中开发的。量子纠缠是许多应用的量子光学源的重要来源,例如量子密码学(5,6),传送(7-9),超分分辨率计量学(10)和量子成像(11)。特别是在量子成像领域,可以利用光子对之间的空间强度相关性超过成像的经典限制(12-14)。此外,用预示的单光子照亮量子图像处理技术的引入揭示了光子限制成像的优势抗抗抑制能力(15)。最近的努力表明,将元图与纠缠光子相结合的趋势是量子光学元件中各种应用应用的趋势(16-20)。在另一种情况下,边缘检测是图像处理中最常见的操作之一,它试图定义图像中区域之间的边界。它是机器和计算机视觉领域(21)的基本工具,是医学图像操作中自动特征的预处理步骤(22,23),也是自动驾驶汽车的关键组成部分(24,25)。与传统数字方法相比,模拟技术具有高速和节能的优势。由于量子纠缠在测量之前拥有无法区分的信息和Instanta-因此,已经提出了各种模拟边缘检测方法(26-35),包括通过我们的超材料和超额叶(36 - 39)。然而,在量子光学领域从未证明基于紧凑的跨表面的边缘检测。
Terahertz极化成像,不仅能够捕获强度曲线,而且能够捕获事件模式的极化状态,是一种具有前途应用的技术,例如安全扫描和医疗诊断。最近,已经提出了一种新的Terahertz成像方法,该方法使用将Terahertz光转换为温度曲线的元图吸收器。然而,由于元图的各向同性几何形状,极化在成像过程中仍然无法区分。为了解决这个问题,这项研究介绍了全丝,极化敏感的跨表面吸收器,并展示了其对Terahertz极化成像的适用性。光学和热模拟证实我们的跨表面的极化依赖性被转化为热域,从而使我们能够区分传入图像中的强度和极化状态。此外,我们证明了一般的椭圆极化下的极化成像是可以实现的。此跨表面有助于Terahertz极化成像,消除了对复杂的设置或笨重的组件的需求,从而减少了形状尺寸并实现了广泛的使用。
对于各种应用,例如能量收集,发射器,太阳能光伏,光调制和颜色过滤器,拥有完美的吸收剂非常有吸引力[1-2]。实现最大吸收的悠久方法是部署金属/介电膜的多层结构,其整体厚度远高于工作波长的多层结构[3]。但是,这些庞大的设计违反了当前缩小光子和光学系统以更好地纳入科学发展和工业需求的趋势。metasurface为这些问题提供了熟练的解决方案,因为它可以提供微型,灵活和快速的光学切换[4]。超材料是人工结构,其本质本质上无法实现渗透性和渗透性,由于其非凡的电磁反应,最近受到了很多考虑。许多不寻常的现象是通过合适的设计来完成的,包括超镜头,隐形的披肩,智能太阳能管理和光学过滤器等[5-7]。元时间的尺寸通常远远超出了波长,这取代了对散装光学的需求,并且也能够在纳米级处操纵光线。这会简单地调节入射光的振幅,极化和相位,并产生次波长效应。
摘要:通过控制子波长量表中的光场,Metasurfaces实现了小型化和频谱成像系统整合的新方法。元整形支持连续体(Quasi-BICS)中的准结合状态可以通过更改结构参数来控制质量因子和光谱响应。在这项工作中,我们提出了一个超紧凑的多光谱成像设备,从而通过支持准BIC的元原子阵列来实现光谱调制。设计的元原子阵列可以在各种波长上充当过滤器,从而使设备能够具有较大的操作范围和具有良好光谱分辨率的高保真光谱重建。由BIC MetaSurfaces组成的微光谱仪也可以用作成像像素来通过定期布置实现计算成像光谱,从而成功地在不同的通道中成功解析了具有空间别名的图像。此光谱仪设备可以以低成本以快速对象识别和适当的空间光谱分辨率来满足市场需求。
摘要:如今,电介质元面是一个有前途的平台,在许多不同的研究领域,例如传感,激光,全光调制和非线性光学器件。在所有不同类型的薄结构中,不对称的几何形状最近引起了人们的兴趣越来越高。尤其是,跨膜中的非线性光 - 物质相互作用构成了实现对光的微型控制的有效方法。在这里,我们通过第二次谐波生成在介电上表面上展示了非线性不对称产生。通过反转泵的照明方向,非线性发射功率由多个数量级调节。此外,我们演示了正确设计的元表面如何在逆转照明方向时在第二个谐波上产生两个完全不同的图像。我们的结果可能会为实现紧凑型纳米光量设备的重要机会铺平道路,以通过密集整合众多非线性谐振器来对应用进行成像。
携带轨道角动量 (OAM) 的表面等离子体极化子,即等离子体涡旋,在光学捕获、量子信息处理和通信领域引起了广泛关注。先前对近场 OAM 的研究仅限于产生单个等离子体涡旋,这不可避免地降低了进一步的片上应用。几何超表面是超材料的二维对应物,具有前所未有的操控电磁波相位、偏振和振幅的能力,为控制等离子体涡旋提供了灵活的平台。在这里,我们提出并通过实验演示了一种基于几何超表面实现太赫兹 (THz) 等离子体涡旋复用的方法。在圆偏振 THz 波的照射下,在金属/空气界面处产生多个具有相同拓扑电荷的等离子体涡旋。此外,还展示了从自旋角动量到多个等离子体 OAM 的转换,即具有不同拓扑电荷的多个等离子体涡旋。由具有不同平面方向的成对空气缝组成的几何超表面旨在展示这些特性。我们提出的方法可能为信息容量不断增加的片上应用开辟一条道路。
摘要 超表面已证明具有在纳米尺度上利用光的奇异能力,这不仅对经典光学而且对量子光学都很重要。量子态的动态操控是量子信息处理的核心;然而,到目前为止,这种功能很少在超表面中实现。本文,我们报告了一种利用非线性超表面对光子量子态进行全光动态调制的方法。该超表面由金属纳米结构和光异构化偶氮层组成。通过光学切换偶氮分子在二元异构态之间来调节等离子体共振,我们实现了对正交偏振光子传输效率以及它们之间的相位延迟的动态控制,从而有效控制纠缠态。作为一个例子,量子态蒸馏已被证明可以将贝尔态从非最大纠缠态恢复到保真度高于 98% 的贝尔态。我们的工作将丰富超表面在量子世界中的功能,从静态到动态调制,使量子超表面走向实用。