摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
强烈的涡流梁有望赋予吸引人的现象和在高功率激光 - 物质相互作用中的应用。当前,多个涡流束的叠加显示了量身定制和增强涡流场的独特能力。但是,产生此类光束的传统策略遭受了大量或/和低激光诱导的损坏阈值的影响,从而阻碍了实际的广泛应用。在此,提出了一个高阈值跨表面,并通过实验证明了多个共线涡流梁的产生和叠加。该方案通过在方位角方向采用切片相模式的概念来利用元图设计中仅相位调制的高转换效率。实验可以实现具有增强强度和稳定空间传播的光点。此外,飞秒激光诱导的嵌入二氧化硅玻璃中的双重双向纳米结构被用作具有高光学效率的构件。透射率大于99.4%,并且在实验中验证了激光诱导的损伤阈值高达68.0 J/cm 2(在1064 nm,6 ns)的损伤阈值。考虑到这些出色的性能,所证明的高阈值超脸在许多高功率激光场中具有有希望的应用。
• 具有 LOS 或 NLOS 条件的室外环境 • 无移动性 • 使用超表面避免信号阻塞 • 最佳路由,调整超表面参数 • KPI:吞吐量、延迟、可靠性、可用性
当前研究中提出的MPA结构包括一个典型的贴片天线(图1a – d),其接地平面被跨表面吸收器结构取代(图1b – e)。它可能是潜在的RFID读取器,因为它不仅可以在正常的天线模式下运行,而且性能提高,而且还可以作为抑制散射的吸收器,这可以有效地减少多路径环境中RFID系统的错误读数。该贴片印在1毫米厚的廉价FR4环氧基底物上。由4x4单位细胞矩阵组成的元图吸收器结构。使用激光蚀刻机(LPKF Protolaser S4)来实现斑块和吸收器结构,如图1 d,e。总体MPA厚度仅为2.53毫米。
图1:Linbo 3元图操作原理和几何形状。a)在元时间播放中播放的差异机制的草图。在角度频率ω处的泵撞击了linbo 3纳米圆柱上的泵,该泵从基板侧碰撞。在角频率2Ω下生成的Sh从零差顺序中删除,并归因于第一个差异顺序,这要归功于单个纳米柱的发射模式之间的干扰。b)直径为15 µm的已实现的跨膜的电子显微镜图像。 c)纳米圆柱的变焦,显示了在过程结束时获得的约80°侧壁倾斜度和顶部。每个纳米氏菌的基本半径为175 nm,高度为420 nm,阵列p为590 nm。元表面位于XY笛卡尔平面,沿Z的Linbo 3的非凡轴。
摘要:光学超表面能够操纵超薄层中的光与物质的相互作用。与金属或电介质超表面相比,由电介质和金属纳米结构组合而成的混合超表面可以为系统中存在的模式之间的相互作用提供更多可能性。在这里,我们研究了通过单步纳米制造工艺获得的混合金属-电介质超表面中晶格共振之间的相互作用。有限差分时域模拟表明,在选定的几何参数发生变化时,Ge 内部波长相关吸收率中出现的模式避免交叉,这是强光耦合的证据。我们发现测量和模拟的吸收率和反射光谱之间具有良好的一致性。我们的超表面设计可以轻松纳入自上而下的光电器件制造工艺,可能的应用范围从片上光谱到传感。关键词:超材料、半导体、杂化、光电子学
随着超表面在光学应用领域的应用越来越广泛,在其开发中需要一种能够以低成本实现大表面和亚100纳米尺寸的制造方法。由于其高吞吐量和小结构化能力,软纳米压印光刻是制造此类器件的良好候选方法。但是,由于必须使用低粘度聚合物才能达到所需尺寸,因此阻碍了其在可见光波长下超表面的应用,这使得最终的压印件更易碎,且该过程更昂贵、更复杂。在此,我们提出了一种PDMS模具制造方法,该方法依赖于PDMS的自组装掩模,然后直接蚀刻模具,从而与聚合物粘度无关可达到的最小尺寸。我们对使用我们的方法获得的模具制造的超表面进行了表征,验证了其在大表面器件纳米制造中的应用。
[20] Liu W W,Chen S Q,Li Z C等。使用单层跨表面[J]在Terahertz区域中在Terahertz区域中传输模式下的极化转换实现。光学信,2015,40(13):3185-3188。
摘要:Terahertz(THZ)连续波(CW)光谱系统可以通过拍摄高性能电信(1530-1565 nm)激光器来提供极高的光谱分辨率。然而,这些系统中的典型THZ CW检测器使用狭窄的带隙光电导体,这些光接合器需要精心生长并产生相对较大的检测器噪声。在这里,我们证明了纳米结构的低温种植GAA(LT-GAAS)的跨表情中的两步光子吸收,该元面可在大约一个picsecond中切换光导率。我们表明,尽管带隙是电信激光光子能量的两倍,但LT-GAA可以用作CW THZ检测器中的超快光电自动导体。元图设计利用了LT GAAS谐振器中的MIE模式,而THZ检测器的金属电极可以设计以支持附加的光子模式,从而进一步增加了所需波长下的光电导率。
受益于子波长厚度内的突然变化,跨波长已被广泛应用于轻质和紧凑的光学系统。同时宽带和高效特征对跨境的实际实施极大地吸引。然而,当前的元表设备主要采用离散的微/纳米结构,这些结构很少同时认识两者。在本文中,提出了由准连续纳米带组成的介电元面积来克服这一限制。通过准连续的纳米弹簧跨表面,正常的聚焦金属和超级振荡镜头克服了衍射极限,并通过实验证明了衍射极限。准连续的MetadeVices可以在450 nm至1000 nm的宽带波长中运行,并保持高功率效率。与先前报道的具有相同厚度的金属镜相比,制造金属的平均效率达到54.24%,显示出很大的提高。可以轻松地扩展所提出的方法,以设计其他MetadeVices,具有宽带和高效率在实践光学系统中的优势。