图4:模拟的角度分散。(a)在1570 nm的波长(电偶极共振模式)波长下,元表面的元表面透射率。(b)在1400 nm(磁模式)波长下具有相同的透射率。(c)磁模式的(b)子图中沿虚线的传输值以及数据的高斯拟合值。
具有无与伦比的光可控性的超表面已显示出彻底改变传统光学的巨大潜力。然而,它们主要需要外部光激发,这使得它们很难完全集成到芯片上。另一方面,集成光子学可以将光学元件密集地封装在芯片上,但它限制了自由空间光的可控性。在这里,通过将超表面装在波导上,我们将导波塑造成任何所需的自由空间模式,以实现复杂的自由空间功能,例如平面外光束偏转和聚焦。这种超表面还打破了有源微环谐振器中顺时针和逆时针传播的回音壁模式的简并性,从而导致片上直接轨道角动量激光。我们的研究展示了一条跨集成光子学和自由空间平台完全控制光的可行途径,并为创建具有灵活访问自由空间的多功能光子集成设备铺平了道路,这使得通信、遥感、显示器等领域的大量应用成为可能。
在过去的十年中已经进行了,以理解和利用等离子纳米颗粒的非线性响应。12,54,56,74尽管进步稳定,但许多挑战仍然提出一个问题,即非线性等离子材料是否可以与传统的非线性材料相媲美。在这里,我们回顾了非线性等离子体超材料的当前状态,并试图解决上述问题。特别是,我们将治疗集中在接近光学和近红外频率附近的质量跨空面上。单个颗粒和传播表面等离子体也被排除在范围之外,因为它们已经在参考文献中覆盖了。41。此外,在该主题上已经存在一些评论,其重点是物质方面,制造,量子效应和异国情调的非线性现象。12,42,49,54,56,71,74因此,在这里,我们排除了这些考虑因素,而是专注于讨论非线性光学,模拟方面和SHG发射元信息的原理。我们重点介绍了与以前的方法相关的问题,并讨论了如何通过使用晶格和粒子间影响来缓解这些问题,例如表面晶格共振(SLR)。51