在四维(4D)Energy-Momentum空间的部分中提供电子结构的多维图像。6个带结构和费米表面,也可以直接访问动量依赖性带重归其化和寿命效应。7–10另一个有趣的应用是轨道层析成像,它可以在实心表面上提供重建的分子轨道的真实空间断层图。11,12取决于将射击角度或表面平行动量成分成像到检测器上,该技术分别称为ARPES或动量显微镜。在此能量 - 巨型成像中,光子能量至少在三种不同的方式中是一个重要参数。首先,Photon能量确定最大可检测的电子动能,3D动量,因此,探测的体积
在生物体发育、体内平衡和疾病过程中,蓬乱 (Dvl) 蛋白是 β-catenin 依赖性和 β-catenin 非依赖性 Wnt 通路中的关键信号因子。尽管它们对信号传递的重要性已在许多生物体中得到遗传证实,但我们对其机制的理解仍然有限。先前使用过表达蛋白的研究表明,Dvl 定位到依赖于其 DIX 结构域的大型点状细胞质结构中。为了研究 Dvl 在 Wnt 信号传导中的作用,我们对内源表达的 Dvl2 蛋白进行了基因组工程改造,该蛋白带有 mEos3.2 荧光蛋白标记,用于超分辨率成像。首先,我们通过多个独立的检测方法展示了融合蛋白在 β-catenin 依赖性和 β-catenin 非依赖性信号传导中的功能性和特异性。我们对 Dvl2 进行了活细胞成像,以分析超分子胞质 Dvl2_mEos3.2 凝聚物的动态形成。虽然 Dvl2_mEos3.2 的过度表达模拟了之前报道的大量大“点状”的形成,但在生理蛋白质水平上,超分子凝聚物的形成仅在大约每个细胞一个的细胞亚群中观察到。我们发现,在这些凝聚物中,Dvl2 与 Wnt 通路成分在 γ-微管蛋白和 CEP164 阳性中心体结构处共定位,并且 Dvl2 对这些凝聚物的定位是 Wnt 依赖性的。使用光激活定位显微镜 (PALM) 结合 DNA-PAINT 的 mEos3.2 单分子定位显微镜展示了这些凝聚物以细胞周期依赖的方式的组织和重复模式。我们的结果表明,Dvl2 在超分子凝聚物中的定位是动态协调的,并且取决于细胞状态和 Wnt 信号水平。我们的研究以单分子分辨率突出了 Wnt 通路中内源性和生理调节的生物分子凝聚物的形成。
三维电镜数据是分析脑超微结构成分的可靠工具 [3–5]。由于典型的 3D-EM 数据规模大、成分数量庞大,因此手动执行这种分割非常繁琐,甚至不可能。例如,手动标记 5 亿个体素中的 215 个神经突需要 1500 小时 [6],我们估计,手动分割 3 亿个体素(大小为 15 × 15 × 50 nm3)的白质电镜中的轴突需要 2400 小时 [7]。因此,分析脑组织的 3D-EM 数据需要开发先进的软件工具,使神经科学家能够自动可视化、分割和提取脑超微结构的几何和拓扑特征。有几种用于分析 3D-EM 数据的软件工具,包括开源软件包,如显微镜图像浏览器(MIB)[8]、DeepMIB [9]、Knossos [10]、webKnos-sos [11]、AxonSeg [12]、AxonDeepSeg [13]、TrackEM2 [14]、CAT-MAID [15]、VAST [16]、NeuroMorph [17]、SegEM [6]、Ilastik [18],
虽然免疫组织化学和电子显微镜研究也揭示了 NVU 主要参与者的重要见解,但这些方式通常仅限于局部大脑区域,因为它们不易应用于全脑研究。然而,一些研究表明,同侧皮质不同区域的细胞组成、能量需求以及多种功能存在很大差异,更不用说大脑的其余部分了。14、15 这表明一个大脑区域的血管特征和组织可能不适用于其他大脑区域。因此,需要对脑血管组织和大脑区域异质性进行网络级和全脑研究,以更好地了解它们的关键功能以及病理条件下的任何潜在脆弱性。幸运的是,技术创新为小鼠全脑脑血管映射研究铺平了道路。虽然方法列表在不断增加,但这里的重点将包括当前几种细胞分辨率离体成像方法的改编,这些方法可以大致分为连续切片的块面成像和光片荧光显微镜 (LSFM)。我们还将讨论作为成像过程不可或缺的一部分的样品处理和血管标记策略。这些成像模式提供了研究脑血管系统细节的方法,每种方式都有自己的优点和局限性。重要的是,这些研究在技术上具有挑战性,不仅在成像方面,而且在需要高水平计算技能的分析流程方面。鉴于此,以及这些模式的快速扩展和我们对脑血管系统重要性的理解,综合最近研究工作中获得的知识和资源已成为必要。
1 波兰 AGH 科技大学物理与应用计算机科学学院,Al. Mickiewicz 30, 30-059 克拉科夫;Karolina.Planeta@fis.agh.edu.pl(KP);Natalia.Janik-Olchawa@fis.agh.edu.pl(NJ-O.)2 波兰雅盖隆大学动物学和生物医学研究所,Golebia 24, 31-007 克拉科夫;Zuzanna.Setkowicz-Janeczko@uj.edu.pl(ZS);K.Janeczko@uj.edu.pl(KJ)3 卡尔斯鲁厄理工学院同步辐射应用实验室,Kaiserstr. 12, D-76131 卡尔斯鲁厄,德国;Czyzycki@kit.edu(MC); Tilo.Baumbach@kit.edu (TB) 4 雅盖隆大学生物化学生物物理与生物技术学院,Golebia 24, 31-007 克拉科夫,波兰;Damian.Ryszawy@uj.edu.pl 5 卡尔斯鲁厄理工学院光子科学与同步辐射研究所,Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen,德国;R.Simon@kit.edu * 通讯地址:Joanna.Chwiej@fis.agh.edu.pl † 上述作者对本研究贡献相同。‡ 作者遗憾地宣布,年轻的科学家、我们的好朋友 Damian Ryszawy 在本文最终准备好之前突然去世。
摘要:深层脑显微镜受成像探头尺寸的严重限制,无论是在可实现的分辨率方面,还是在手术可能造成的创伤方面。在这里,我们展示了一段超薄多模光纤(套管)可以取代大脑内部笨重的显微镜物镜。通过创建一个自洽的深度神经网络,该神经网络经过训练可以从套管传输的原始信号中重建以人为中心的图像,我们展示了单细胞分辨率(< 10 µ m)、深度切片分辨率 40 µ m 和视野 200 µ m,所有这些都使用绿色荧光蛋白标记的神经元在距离大脑表面 1.4 毫米的深度处进行成像。由于在体内很难获得这些深度的真实图像,我们提出了一种新颖的集成方法,该方法对来自不同深度神经网络架构的重建图像进行平均。最后,我们展示了移动的 GCaMp 标记的 C . elegans 蠕虫的动态成像。我们的方法大大简化了深部脑显微镜检查。
© 2022 作者。本文根据 Creative CommonsAttribution 4.0 International 许可证授权,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信用,提供 CreativeCommons 许可证的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的 Creative Commons 许可证中,除非在材料的信用额度中另有说明。如果材料未包含在文章的 Creative Commons 许可证中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
导电原子力显微镜(C-AFM)是通过在导电探针和样品之间应用一定的偏置电压并获得样品的电气信息,是在微电子分析中使用的强大工具。在这项工作中,通过C-AFM获得具有不同分布的Lambda DNA(λDNA)分子的表面形态信息和当前图像。将1 ng/μL和10 ng/μL的DNA溶液滴入云母上,以制作随机分布的DNA和DNA网络样品,然后将另一个1 ng/μl的DNA样品放入DC电场中,电压为2 V,然后将其干燥以拉伸DNA样品。结果表明,流过DNA网络的电流显着高于实验中DNA的拉伸和随机分布。通过将C-AFM的偏置电压从-9 V到9 V获得DNA网络的I-V曲线。研究了在不同的pH值下流过拉伸DNA的电流。当pH为7时,电流最小,并且随着溶液变成酸性或碱性,电流逐渐增加。
在低电子能量的扫描电子显微镜(SEM)中,损伤诱导的电压改变(DIVA)对比度机制已作为一种快速且方便的方法,可以直接可视化硝酸盐(GAN)中能量离子辐照引起的电阻率的增加。在覆盖有金属面膜的蓝宝石上外上植物生长的gan层,并在600 keV能量下受到He 2 +辐射的约束。在不同的电子束电流和扫描速度下,在SEM上成像样品横截面处的二维损伤曲线。通过电子束照射沉积的累积电荷的增加观察到了图像对比的逐渐发展,以最终达到与GAN离子辐射部分的局部电阻率相关的对比度的饱和水平。提出的方法允许人们直接可视化离子辐照区域,即使是由于离子损伤导致的最低电阻率变化,即用离子辐照后,甘恩的所有级别的绝缘层堆积。考虑到不可能将湿化学的蚀刻技术应用于GAN,它使提出的技术成为基于GAN-基于GAN-基于电子设备的高度抗性和绝缘区域的可视化方法。提出的作品的主要目的是更深入地了解GAN中的Diva对比,特别强调讨论栅格速度和电子束电流的作用,即电荷堆积的细节样品表面。
2 桑迪亚国家实验室,美国新墨西哥州阿尔伯克基 87185 3 加利福尼亚大学机械工程系,加利福尼亚州圣巴巴拉 93106,美国 a) 通讯作者:aatalin@sandia.gov 了解和控制电荷载流子与埋藏绝缘体/半导体界面缺陷的相互作用对于实现现代电子产品的最佳性能至关重要。在这里,我们报告了使用扫描超快电子显微镜 (SUEM) 远程探测埋藏在厚热氧化物之下的 Si 表面的激发载流子的动力学。我们的测量结果展示了一种新颖的 SUEM 对比机制,即半导体中空间电荷场的光学调制会调制厚氧化物中的电场,从而影响其二次电子产量。通过分析 SUEM 对比与时间和激光能量密度的关系,我们证明了界面陷阱通过扩散介导捕获激发载流子。