摘要 金属基复合材料 (MMC) 因其增强的机械性能而广泛用于各种应用。MMC 能够减轻结构重量,从而降低燃料消耗,因此在地面运输和航空领域尤其具有吸引力。在本研究中,通过搅拌铸造 [SC] 路线生产了用二硼化锆 (ZrB 2 ) 增强的 AA2017。增强颗粒 ZrB 2 以不同的重量百分比 0、5、10 和 15 混合。根据 ASTM 标准,对铸造样品进行机械表征,例如显微硬度和拉伸测试以及扫描电子显微镜 (SEM) 分析。SEM 分析表明 ZrB 2 颗粒在 AA2017 基体中分散均匀,团聚较少。机械测试结果显示性能有所改善,并且这是针对 AA2017-15wt.% ZrB 2 合成复合材料实现的。显微硬度测试显示,与基础铸态合金相比,VHN 值增加了约 101 (40.28%)。极限抗拉强度 (UTS) 也比铸态合金提高了约 155 MPa (59.79%)。
定向能量沉积 (DED) 是一种增材制造技术,可以快速生产和修复具有灵活几何形状的金属零件。DED 期间热和材料传输的复杂性会产生不必要的微观结构异质性,从而导致零件性能分散。在这里,我们研究了使用不同沉积速率通过粉末吹制 DED 生产的 Inconel 718 在不同长度尺度上的微观结构变化。我们量化了零件内晶粒结构、纹理、成分和凝固结构的空间趋势,并将它们与硬度、屈服强度和杨氏模量的变化相关联,以突出凝固过程中热环境的影响。我们发现,使用高沉积速率时采用的高能量输入有利于沿构建和横向方向产生显着的微观结构异质性,这源于所使用的沉积策略产生的不对称冷却速率。我们还发现,在 Inconel 718 上采用的标准热处理不适合使微观结构均质化。这些结果对于开发工业相关的增材制造零件的构建速率策略具有重要意义。© 2021 作者。由 Elsevier BV CC_BY_NC_ND_4.0 出版
采用溶剂铸造法,以铁屑废料为填料,开发聚苯乙烯复合材料,旨在提高机械、晶体学和微观结构性能,以满足特定用途。根据 ASTM D638-10 标准进行拉伸试验。还进行了 X 射线衍射 (XRD) 分析和微观结构分析。杨氏模量随填料浓度 (0 – 15 wt%) 的增加而增加 (从 335.2 N/mm 2 增加到 1131.3 N/mm 2 ),断裂伸长率则反之亦然 (从 4.9 mm 增加到 1.6 mm)。XRD 显示,铁屑颗粒和聚苯乙烯基树脂 (PBR) 基质之间存在良好的结构相互作用。该复合材料分别结合了聚苯乙烯和铁屑的无定形和晶体性质。也没有观察到化学反应,但聚苯乙烯基体中形成了协同结构增强。微观结构分析表明,铁屑颗粒在聚苯乙烯基体中分散性良好,分布均匀;填料质量分数为15%的复合材料界面黏附性最好,颗粒-基体体系的混合比例适宜。
摘要:改善脆性底物上纳米化薄膜的界面稳定性对于诸如微电子等技术应用至关重要,因为所谓的脆性 - 延性 - 延性 - 延性界面限制了其整体可靠性。通过调整薄膜特性,由于分层过程中的外部韧性机制,可以改善界面粘附。在这项工作中,在模型的脆性 - 凝胶界面上研究了膜微结构对界面粘附的影响,该模型由脆性玻璃底物上的纳米化cufim插头组成。因此,使用磁控溅射将110 nm薄的Cu纤维沉积在玻璃基板上。虽然在溅射过程中保持纤维厚度,残留应力和纹理的质地可比,但在沉积过程中和通过等温退火过程中,纤维微结构变化了,导致四个不同的cufifms产生了晶粒尺寸分布。然后使用应力的MO覆盖剂确定每个Cufim的界面粘附,这触发了直接自发扣的形状的Cufifm分解。每个薄膜的混合模式粘附能的范围从较大晶粒的膜的2.35 j/m 2到4.90 j/m 2的纤维,对于纳米晶粒量最高的薄膜。使用聚焦的离子束切割和通过共聚焦激光扫描显微镜对扣子进行额外研究,可以通过对扣的额外研究进行清晰的效果,以将其切换并量化固定在弯曲的薄膜中的弹性和塑性变形的量。关键字:薄膜粘附,脆性 - 延性界面,自发扣,纤维微观结构,纳米化的cufifms可以证明,具有较小晶粒的膜表现出在分层过程中吸收更高量的能量的可能性,这解释了它们较高的粘附能量。
摘要:本文评估了通过直接能量沉积 (DED) 粉末涂层翻新磨损的制动盘。使用中碳钢粉末涂覆铸铁盘。该钢的沉积直接在盘表面进行,或者在先前沉积不锈钢缓冲层之后进行。可以看出,尽管在盘与两种不同涂层(缓冲层和外层)之间的界面处形成了铸造微结构,但使用缓冲层可确保良好的涂层附着力。将涂层盘与两种不同的无铜商用摩擦材料进行测试,以评估其摩擦学性能。两种摩擦材料在涂层盘上滑动时测量到的摩擦系数、比磨损率和总排放量非常相似。这些摩擦学数据略高于未涂层盘获得的数据,这表明需要改进顶层涂层成分和表面处理才能获得更好的性能。
摘要:本文回顾了纳米颗粒技术在铝基合金增材制造 (AM) 方面的现状。对常见的 AM 工艺进行了概述。增材制造是制造业进步的一个有前途的领域,因为它能够生产出近净成型的部件,并且在最终使用之前只需进行最少的后处理。AM 还允许制造原型以及经济的小批量生产。通过 AM 加工的铝合金由于其高强度重量比,将对制造业非常有益;然而,许多传统的合金成分已被证明与 AM 加工方法不兼容。因此,许多研究都着眼于改善这些合金的加工性的方法。本文探讨了使用纳米结构来增强铝合金的加工性。结论是,添加纳米结构是改进现有合金的一种有前途的途径,并且可能对其他基于粉末的工艺有益。
1 斯坦福大学医学院精神病学和行为科学系,斯坦福,CA 94305。2 斯坦福大学医学院神经病学和神经科学系,斯坦福,CA 94305。3 斯坦福大学医学院斯坦福神经科学研究所,斯坦福,CA 94305。4 Athena,Inria Sophia Antipolis,法国蔚蓝海岸大学,2004 route des Lucioles 06902 Sophia Antipolis CEDEX,法国。 5 普林斯顿大学普林斯顿神经科学研究所,新泽西州普林斯顿 08544 6 斯德哥尔摩皇家理工学院计算科学与技术系,新泽西州斯德哥尔摩 08544。7 Defi,Inria Saclay 法兰西岛,巴黎南大学综合理工学院 1 Rue Honoré d'Estienne d'Orves 91120 Palaiseau,法国。 8 Parietal,Inria Saclay Île-de-France,CEA University Paris Sud 1 Rue Honoré d'Estienne d'Orves 91120 Palaiseau,法国。通讯作者:Vinod Menon 博士和 Demian Wassermann 博士。电子邮件:menon@stanford.edu; demian.wassermann@inria.fr
神经发育障碍中的早期神经病理学机制部分不足,因为常规解剖磁共振成像(MRI)无法检测出产后发育过程中体内细微的脑微结构变化。因此,我们将磁共振弹性图(MRE)和扩散张量成像(DTI)的潜在值投资于由母体免疫激活引起的神经发育障碍的大鼠模型。我们研究了12个母亲的12个后代,这些母亲在妊娠第15天注射了多迪比替迪吡胆蛋白略带略丁酸(poly(i:c),4 mg/kg),再加上8个对照。T2加权解剖学MR图像,MRE(800 Hz)和DTI(30个梯度方向,B = 765.8 s/mm 2,5图像,B = 0 S/mm 2)在4和10周大时被收集,并将结果与在10周进行的组织学分析进行比较。心室在聚(I:C)大鼠中的第4周比对照组大。在聚(i:c)大鼠中未检测到其他形态异常。在第4周,较大的心室与较低的外部胶囊裂纹各向异性和胶囊径向扩散(Pearson,R = -0.53,95%置信区间(CI)[-0.79至-0.12],和R = -0.45%CI [-0.45%CI [-0.74至-0.74至-0.74至-0.74 to)call体的平均和径向扩散,外囊内囊的平均和轴向扩散和外部囊中的径向扩散特性随着poly(i:c)大鼠的年龄而增加(Sidak的比较,P <0.05)。皮质刚度随着聚(I:C)大鼠的年龄而增加(Sidak的比较,P = 0.005)。这些时间变化可能反映了异常髓磷脂含量,在组织学评估后第10周观察到的细胞密度和小胶质细胞激活降低。得出结论,MRE和DTI允许从出生后第4周开始监测聚(I:C)大鼠的脑微结构异常变化。这表明这两种成像技术都有可能用作综合成像工具,以例行解剖成像,以帮助早期诊断神经发育障碍,并为神经病理提供新的见解。
摘要:Ti6Al4V 合金具有高比机械性能、优异的耐腐蚀性和生物相容性等独特特性,是一种适用于各种工程应用的理想轻质结构金属。本文详细介绍了选择性激光熔化 Ti6Al4V 零件的机械性能,以及影响最终性能的主要加工和微观结构参数。通过将 Ti6Al4V 零件的微观结构特征与最终机械性能联系起来,提供基础知识,包括拉伸强度、拉伸应变、抗疲劳性、硬度和磨损性能。本文还对激光粉末床熔合与传统加工方法进行了比较。本文还批判性地讨论了成品 Ti6Al4V 零件中存在的缺陷及其对机械性能的影响。文献中的结果表明,当考虑植入物和航空航天应用标准的最低值时(例如 ASTM F136-13;ASTM F1108-14;AMS4930;AMS6932),典型的激光粉末床熔融 Ti6Al4V 拉伸性能(屈服强度 >900 MPa 和拉伸强度 >1000 MPa)是足够的。
摘要 本研究采用射频磁控溅射技术在SiO2/Si基底上沉积铝(Al)薄膜,以分析射频溅射功率对微结构表面形貌的影响。采用不同的溅射射频功率(100–400 W)来沉积Al薄膜。利用X射线衍射图(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和傅里叶变换红外(FTIR)光谱研究了沉积Al薄膜的特性。X射线衍射(XRD)结果表明,低溅射功率下沉积的薄膜具有非晶性质。随着溅射功率的增加,可以观察到结晶。AFM分析结果表明,300 W的射频功率是生长最光滑Al薄膜的最佳溅射功率。FTIR结果表明,不同的射频功率影响沉积薄膜的化学结构。 SEM结果表明,随着溅射功率的增加,基体表面形成了孤立的纹理。总之,射频功率对沉积薄膜的性质,特别是结晶和形状有显著的影响。