焊接是船舶制造业不可缺少的制造工艺。激烈的竞争往往需要一种经济高效、可靠的焊接方法。本研究研究了埋弧焊 (SAW)、金属活性气体 (MAG) 焊和等离子弧焊 (PAW) 制造的 ASTM A131 (A 级) 钢接头的可焊性、微观结构和一些机械性能。通过光学显微镜检查了焊缝的微观结构。通过显微硬度测量、拉伸和冲击试验确定了接头的机械性能。结果表明,接头的抗拉强度高达 462 MPa。断裂的位置总是与母材相邻。焊缝金属的夏比冲击功达到 72.5 J,比母材的夏比冲击功 57.7 J 高 25%。PAW 方法可获得 221 HV 的较高硬度,而母材的硬度为 179 HV。关键词:A 级钢;焊接;拉伸失效;硬度
[1] R. Meyer,J. Köhler,A. Homburg,Explosives,第 7 版完全修订和更新版,Wiley-VCH Verlag,Weinhein,德国,2016 年 [2] R. Amrousse,K. Fujisato,H. Habu,A. Bachar,C. Follet-Houttemane,K. Hori,CuO 基催化剂上二硝酰胺铵(ADN)作为高能材料的催化分解,催化科学与技术,2013,3(10),2614-2619 [3] TP Russell,AG Stern,WM Koppes,CD Bedford,二硝酰胺铵的热分解和稳定化,JANNAF Proc.,CPIA Publ.,1992,2,593 [4] AN Pavlov,VN Grebennikov,LD Nazina、GM Nazin、GB Manelis,《二硝酰胺铵的热分解和二硝酰胺盐异常衰变机理》,《俄罗斯化学通报》,1999 年,48,第 1 期 [5] GB Manelis,《二硝酰胺铵盐的热分解》,《第 26 届国际 ICT 年鉴》,德国卡尔斯鲁厄,1995 年,15.1-17 [6] M. Herrmann、W. Engel,《用 X 射线衍射测量 ADN 的热膨胀》,《第 30 届弗劳恩霍夫 ICT 年鉴》,1999 年,118.1-7。 [7] H. Östmark、U. Bemm、A. Langlet、R. Sanden、N. Wingborg,《二硝酰胺 (ADN) 的性质:第 1 部分,基本性质和光谱数据》,《J. Energetic Materials》,2000 年,18,123-138 [8] M. Johansson、N. Wingborg、J. Johansson、M. Liljedahl、A. Lindborg、M. Sjöblom,《ADN 不仅仅是颗粒和配方 – 它是未来导弹推进剂的一部分》,《不敏感弹药与含能材料技术研讨会》,2013 年,美国圣地亚哥 [9] T. Heintz、H. Pontius、J. Aniol、C Birke、K. Leisinger、W. Reinhard,《二硝酰胺 (ADN) - 制粒、涂层和特性》,《推进剂爆炸》。 Pyrotech. 2009, 34, 231– 238 [10] M. Herrmann、U. Förter-Barth、PB Kempa、T. Heintz,ADN 和 ADN 颗粒的热行为 – 晶体和微结构 – 第一部分,第 48 届国际会议论文集,Fraunhofer ICT,2017,43.1–13。
基于长丝挤压的金属增材制造为广泛使用的基于梁的增材制造提供了一种替代方案。从基于挤压的技术获得的微观结构与基于梁的增材制造获得的微观结构有很大不同,因为挤压技术采用了烧结工艺,而不是熔池的快速凝固。在本研究中,研究了通过长丝挤压制备的 316L 不锈钢的微观结构与脱脂和烧结条件的关系。采用与能量色散 X 射线映射相关的高速纳米压痕来表征微观结构。发现 1350 ◦ C 的高烧结温度、纯 H 2 气氛和 60 K/m 的冷却速度可产生最佳微观结构。由于加速致密化,可获得高密度,这是通过引入由于 𝛿 铁素体形成而产生的扩散路径实现的。同时,可以避免氧化物或𝜎 沉淀物等硬质相对机械性能产生不利影响。结果表明,可以通过分析纳米压痕映射的硬度和模量数据来量化孔隙率。所得值与光学和阿基米德浸没法测量值高度一致。与文献相比,3D 打印和烧结样品的拉伸试验显示出出色的延展性和强度。我们证明,316L 细丝的 3D 打印和在优化条件下烧结可产生与块体值相当的材料性能。
摘要:本文介绍了一种利用激光添加剂在SS316L基体表面制备95% IN718+5%(75% Cr 2 O 3 + TiO 2 )陶瓷涂层的方法,分析了金属基复合材料的宏观形貌、物相、微观组织、界面、耐磨性和抗拉强度。结果表明,金属基复合材料(MMC)层状复合材料与单一材料相比具有良好的微观硬度和耐磨性。与单一IN718材料的对比分析表明,层状复合材料表现出优异的微观硬度和耐磨性。此外,研究还揭示了材料硬度与耐磨性之间呈正相关的关系,其特点是随着材料硬度的增加,磨损系数和平均磨损量降低。本研究结果为生产高耐磨涂层复合材料提供了一种经济高效、实用的方法。
这是一篇关于先进高强度钢 (AHSS) 微观结构-性能关系理解的最新进展的观点论文。这些合金构成一类高强度可成型钢,主要设计为运输部门的板材产品。AHSS 通常具有非常复杂和多层次的微观结构,由铁素体、奥氏体、贝氏体或马氏体基体或这些成分的双相或甚至多相混合物组成,有时还富含沉淀物。这种复杂性使建立可靠的、基于机制的微观结构-性能关系具有挑战性。目前已有许多关于不同类型 AHSS 的优秀研究(例如双相钢、复相钢、相变诱导塑性钢、孪生诱导塑性钢、贝氏体钢、淬火和分配钢、压硬钢等),并且出现了几篇概述,其中讨论了它们的与机械性能和成型相关的工程特征。本文回顾了该领域微观结构和合金设计的最新进展,特别关注了利用复杂位错亚结构、纳米级沉淀模式、变形驱动转变和孪生效应的含锰钢的变形和应变硬化机制。本文还回顾了微合金纳米沉淀硬化钢和压硬化钢的最新发展。除了对其微观结构和性能进行批判性讨论外,还评估了它们的抗氢脆和损伤形成等重要特性。我们还介绍了应用于 AHSS 的先进表征和建模技术的最新进展。最后,讨论了机器学习、全过程模拟和 AHSS 的增材制造等新兴主题。这一观点的目的是找出这些不同类型的先进钢材在变形和损伤机制上的相似之处,并利用这些观察结果促进它们的进一步发展和成熟。
固态连接技术如图 1 所示。该技术已广泛应用于铝合金、镁、铜、钛和钢。与传统的熔焊方法相比,FSW 工艺的优势包括机械性能更好、残余应力和变形小、缺陷发生率低 [1-2]。该焊接技术正在应用于航空航天、汽车和船舶制造业,并吸引了越来越多的研究兴趣。FSW 技术需要彻底了解该工艺,并随后评估焊缝的机械性能,以便将 FSW 工艺用于航空航天应用部件的生产。因此,需要进行详细的研究和鉴定工作 [3]。基于两块待连接板材的接合面摩擦生热,在 FSW 工艺中,一种带有适当设计的旋转探头的特殊工具沿接触金属板的厚度向下移动,通过相关的搅拌作用产生高度塑性变形区。局部热机械影响区是由工具肩部和板顶面之间的摩擦以及与工具接触的材料的塑性变形产生的 [4]。探头通常略短于工件厚度,其直径通常略大于
微电子革命仍在继续。技术创新层出不穷,半导体器件、集成电路和系统的性能成本比不断提高。尽管这可能很有趣,但过去三十年的微电子历史对行业几乎没有直接好处。这本名为《先进 CMOS 工艺技术》的 VLSI 电子系列丛书提供了微电子领域一个高度相关的领域的当前快照。由于文中讨论的原因,CMOS(互补金属氧化物半导体)技术在现在和未来的电子系统中起着主导作用。在为本专著选择合适的材料时,我们指定了两个选择标准。首先,我们寻找对 CMOS 工艺技术的现在和未来发展水平至关重要的主题。其次,由于篇幅和时间限制,我们关注其他论坛中涉及最少的问题。除了介绍性评论和 CMOS 器件和电路考虑因素的背景外,我们将主题列表缩小到金属化、隔离技术、可靠性和产量。读者不应推断被省略的领域(包括光刻和蚀刻技术)排名较低。相反,这些主题在(例如)本 VLSI 电子学系列的早期卷中已经得到大量明确的审查。最后,我们指出,我们的目标是尽可能清楚地报告我们选择交流的 CMOS 工艺技术问题的现状,从而为全球微电子行业做出贡献。此外,我们试图尽可能准确地预测未来的发展。这种贡献是暂时的。我们希望业界能够通过创新、发明和托马斯·爱迪生那样的辛勤努力超越这本专著的技术内容。事实上,我们将本书献给工程师、科学家和技术经理,他们将使我们提出的许多技术问题变得过时。
所提供的作品“原样”。麦格劳 - 希尔(McGraw-Hill)及其许可人对使用工作的准确性,充分性或完整性或结果不保证或保证,包括可以通过超链接或otherwise通过工作访问的任何信息,并且明确不违反任何保修,明确或暗示,包括但不限于商品或特定用途的植入保修,包括但不限于植入的保修。McGraw-Hill及其许可方不保证或保证工作中包含的功能将符合您的要求,或者其操作将不间断或无错误。McGraw-Hill及其许可人不应对您或其他任何人承担任何不准确,错误或遗漏的责任,无论原因,在工作中或对此造成的任何损害赔偿。麦格劳 - 希尔(McGraw-Hill)对通过工作访问的任何信息不承担任何责任。在任何情况下,麦格劳 - 希尔(McGraw-Hill)和/或其许可人不得对由于使用或无法使用工作而造成的任何间接,偶然,特殊,惩罚性,结果,结果或类似损害均承担责任,即使已告知其中任何一个损害的可能性。这种责任限制应适用于任何索赔或造成任何索赔或引起合同,侵权或其他索赔。
数十年来,由于其低密度,出色的机械性能和出色的耐腐蚀性,钛合金已成为各种应用程序(例如飞机和生物医学行业)最有吸引力的工程材料之一。TI-6AL-4V分类为α+β钛合金,主导了总钛使用1)的一半以上。ti-6Al-4V是其他钛合金中最广泛使用的,因为它具有复杂的微结构,可以修改以改善含量的特性2,3)。此外,与高强度的β钛合金相比,该合金的成本也较低。由于对TI-6AL-4V的需求量很高,因此已利用了几种制造方法来满足必要性。ti-6al-4V通常使用铸造和锻造制造,然后加工以精确量身定制最终尺寸4)。然而,由于材料使用效率低下,提前时间,高成本Process 5),这些调用方法是不利的。要克服这些问题,添加剂制造