Al 3s 2 3p 1 12 12 12 FCC a=4.040 3.47 Mg 3s 2 19 19 11 HCP a=3.189; c=5.194 1.52 Si 3s 2 3p 2 9 9 9 金刚石a=5.469 4.54 Ti 3p 6 3d 2 4s 2 15 15 9 HCP a=2.936; c=4.648 5.31 Fe 3d 7 4s 1 17 17 17 BCC a=2.832 4.92 Co 3d 8 4s 1 19 19 13 HCP a=2.491; c=4.025 5.17 Ni 3d 8 4s 2 13 13 13 FCC a=3.518 5.08 Zn 3d 10 4s 2 19 19 11 HCP a=2.637; c=5.072 1.11 Zr 4s 2 4p 6 4d 2 5s 2 15 15 9 HCP a=3.232; c=5.169 6.45 Ru 4d 7 5s 1 19 19 11 HCP a=2.713; c=4.281 7.97 Pd 4d 9 5s 1 12 12 12 FCC a=3.942 3.79 Ag 4d 10 5s 1 12 12 12 FCC a=4.146 2.53
近等原子NiTi相的Ni含量在稳定的成分范围内[1]。因此,发生MT的温度范围决定了NiTi主要用作致动器或基于形状记忆效应或超弹性的生物医学设备。结合金属AM工艺可获得的复杂几何特征,利用形状记忆效应可以制造4D材料,其中时间维度被添加到材料几何形状中。由于NiTi合金是研究最广泛的SMA之一,因此它们也被探索作为AM材料,主要是通过使用粉末床熔合技术,例如选择性激光熔化(SLM)、电子束熔化(EBM)和直接能量沉积(DED)[2e4]。这些AM工艺的特点是几何精度高、能够创建内部通道、表面粗糙度合理,以及能够在材料中产生晶格结构[5e7]。然而,与粉末床熔合技术相比,激光金属沉积 (LMD) 等 DED 工艺吸引的研究关注较少 [8,9]。镍钛诺 (镍和钛的合金) 的 AM 在控制构建部件中的最终 Ni 含量方面可能非常关键,特别是由于 Ni 的优先汽化 [10]。这意味着在 AM 过程中可能会发生化学变化,导致原料偏离初始化学成分。AM 工艺过程中的 Ni 损失会导致部件的最终使用问题以及由材料形状记忆行为的局部差异引起的工艺不稳定性。因此,应仔细选择原料材料以潜在地补偿 Ni 的损失。在这方面,通过雾化生产粉末原料对于控制和维持生产批次内和生产批次之间所需的化学成分可能很麻烦。这种变化对 NiTi 合金性能来说可能更为关键,因为它对其化学成分高度敏感。已有研究调查了粉末和线材原料的元素混合,以解决 DED 工艺中化学成分变化的问题 [11, 12]。尽管 NiTi 粉末原料尚未被 AM 最终用户广泛使用,但细 NiTi 线材在市场上广泛可用,并正在开发用于各种应用。商用 NiTi 线材有不同的直径,价格明显低于具有相同化学成分的粉末原料。在使用 NiTi 线材的 DRD 工艺中研究了电弧和等离子等不同热源 [13 e 17]。最近,已证明使用脉冲波 (PW) 激光发射可有效沉积小直径线材,并且与线材直径相比,轨道宽度不会显着增大 [18]。微激光金属丝沉积 (m LMWD) 是一种制造小型 3D 组件或小型半成品零件(例如板、管和环)的好方法,这些零件由镍钛合金制成。与粉末沉积相比,该工艺本质上更安全,原料尺寸与市售 NiTi 丝的直径(0.4 e 0.5 毫米)相当。m LMWD 工艺的可行性已在多种材料中得到证实,例如不锈钢 [18]、AlSi 12 合金 [19] 和以 Dy 为主要合金的 Mg 合金
摘要 出生时的大脑皮层结构编码了区域差异化的树突分枝和突触形成。它是 2 岁儿童行为出现的基础。0-2 岁时的大脑变化在整个生命周期中最为活跃。通过出生时的大脑微结构有效预测未来行为将揭示正常发育中行为出现的结构基础,并确定用于早期发现和针对性干预非典型发育的生物标志物。在这里,我们旨在评估通过扩散 MRI 量化的新生儿全脑皮层微结构以预测未来行为。我们发现,使用支持向量回归,新生儿皮层微结构可以稳健地预测 2 岁时评估的个体认知和语言功能。值得注意的是,对预测模型贡献很大的皮层区域表现出对认知和语言的独特功能选择性。这些发现强调了出生时的区域皮层微结构是预测未来神经发育结果和识别个体脑部疾病风险的潜在敏感生物标志物。
摘要:在本文中,详细研究了由高电流脉冲电子束处理的ZR-17NB合金的微观结构和磨损固定性。使用X射线衍射(XRD)分析后的脉冲处理后的相位变化,显示了由β(ZR,NB)相的一部分形成的β(nb)相和α(ZR)相。另外,还发现了β(ZR,NB)衍射峰的变窄和移动。扫描电子显微镜(SEM)和金相分析结果表明,高电流脉冲电子束(HCPEB)治疗之前合金表面的显微结构是由等上晶体组成的。但是,在15和30脉冲处理后,陨石坑结构得到了显着造成的。此外,还发现合金表面在30脉冲处理后经历了共菌体转化,并且发生了β(ZR,NB)的反应→αZR +βNB。显微硬度测试结果表明,随着脉冲数量的增加,微标志的值会出现向下趋势,这主要是由于谷物的块状和较软的β(nb)相变的形成。磨损耐药性测试结果表明,摩擦系数首先增加,然后降低,然后随脉冲数的增加而增加。
如何快速可靠地克服挑战,以促进锂基盐在潜热存储技术中的开发?原位实时显微镜用于通过微观机制了解材料的理论和实验宏观性质之间的差异。尽管无机锂盐对空气/湿度敏感,且普遍认为 LiOH 在干燥环境或真空下会分解,所以不能用于在显微镜室内合成新材料,但仍证明了该方法在无机锂盐上的可行性。以 Li 4 Br(OH) 3(一种不常见的、有前途的相变材料)为例,调查了与理论能量密度 434 kWh/m 3 约 30% 的偏差来源。起始材料的水合/脱水是主要参数之一,应用温度协议,在形貌和性能方面引起与目标材料不同的偏差。如果不考虑这一标准,则可能会对设备在使用过程中的存储容量造成灾难性的影响。本研究重点介绍了避免这些缺陷的解决方案。尽管操作条件不同,但微观尺度上的结果与宏观尺度上的结果也得到了证明© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
Razvigor Ossikovski, a Hui Ma, b,c,d,* 和 Tatiana Novikova a,* a LPICM、CNRS、巴黎综合理工学院、帕莱索、法国 b 清华大学、物理系、北京、中国 c 清华大学 - 伯克利深圳研究院、精准医疗与健康研究中心、深圳、中国 d 清华大学深圳研究生院、光学成像与传感研究所、深圳市微创医疗技术重点实验室、深圳、中国 e 印度科学教育与研究研究所、物理科学系、加尔各答、印度 f 维尔茨堡大学医院、组织工程与再生医学系 TERM、维尔茨堡、德国 g 弗劳恩霍夫硅酸盐研究所 ISC、再生疗法转化中心 LC-RT、维尔茨堡、德国
摘要 尽管数字微流控 (DMF) 系统中的液滴样本具有精确的可控性,但它们在分离单细胞进行长期培养方面的能力仍然有限:通常,一个电极上只能捕获少量细胞。虽然在电极上制作小尺寸的亲水微贴片有助于捕获单细胞,但必须显著提高液滴运输的驱动电压,从而缩短 DMF 芯片的寿命并增加损坏细胞的风险。在本文中,提出了一种在芯片上设计 3D 微结构的 DMF 系统来形成半封闭微孔,以有效地分离单细胞和长期培养。我们的最佳结果表明,30 × 30 阵列上大约 20% 的微孔被分离的单细胞占据。此外,低蒸发温度油和表面活性剂帮助系统实现 36V 的低液滴驱动电压,这比典型的 150 V 低 4 倍,从而最大限度地减少了对液滴中细胞和 DMF 芯片的潜在损害。为了举例说明技术进步,我们在 DMF 系统中进行了药物敏感性测试,以研究乳腺癌细胞 (MDA-MB-231) 和乳腺正常细胞 (MCF-10A) 对广泛使用的化疗药物顺铂 (Cis) 的细胞反应。芯片上的结果与在传统 96 孔板中筛选的结果一致。这种新颖、简单且强大的单细胞捕获方法在单细胞水平的生物学研究中具有巨大潜力。
a PROFITH“通过体育活动促进身体健康”研究小组,西班牙格拉纳达大学体育科学学院体育与运动教育系,体育与健康大学研究所 (iMUDS) b 荷兰鹿特丹伊拉斯姆斯医学中心 - 索菲亚儿童医院儿童和青少年精神病学系 c 荷兰鹿特丹伊拉斯姆斯医学中心 - 索菲亚儿童医院 R 代研究小组 d 美国马萨诸塞州波士顿东北大学心理学系认知与脑健康中心 e 荷兰鹿特丹伊拉斯姆斯医学中心流行病学系 f 荷兰鹿特丹伊拉斯姆斯医学中心公共卫生系 g 荷兰鹿特丹伊拉斯姆斯医学中心放射学和核医学系 h 美国马萨诸塞州波士顿哈佛大学陈曾熙公共卫生学院社会与行为科学系
5。1d纳米结构,纳米线。融合方法:纳米线大小控制原理。分子和纳米结构的自组织。自组装结构的生长和控制技术在有机电子中进行自组织:在自组织分子的应用中的优势和缺点,层制造,langmuir-blodgett层,体积,有机太阳能细胞和FET的自组织。
摘要 本文在航空合金孔加工的背景下对传统钻孔和螺旋铣削进行了比较研究,阐述了这两种不同的加工工艺对不同航空合金的微观结构和疲劳性能的影响。结果表明,与螺旋铣削工艺相比,两种合金在传统钻孔下都会经历更严重的表面/亚表面塑性变形。对于这两种合金,与传统钻孔相比,螺旋铣削可延长其试样疲劳寿命。在所有加工条件下,Al 2024-T3 的疲劳寿命明显长于 Ti-6Al-4V。使用冷却液通常可减少表面损伤,并可提高加工合金的疲劳性能。此外,还研究了加工表面粗糙度,以进一步阐述不同加工工艺的影响。