本研究展示了一种使用移动设备进行基于阵列的自由空间光 (FSO) 通信的机器学习 (ML) 方法。现代作战人员需要非射频 (RF) 通信方法来消除与 RF 通信相关的风险,例如检测、窃听和干扰。FSO 通信有望实现巨大的吞吐量,并具有其他优势,例如低拦截/检测概率和抗干扰性。然而,大气条件会通过在信道上引入衰落和噪声,从而显著降低实现的性能。为了提高信道弹性和吞吐量,我们在发射器处使用激光阵列采用空间代码,并在信道字母表上训练多个 ML 模型以在接收器处提供高效解码。我们在训练过程中比较了单次检测 (SSD) MobileNet 模型与 You-Only-Look-Once 模型的性能,并使用训练后的 SSD MobileNet 模型演示了通过概念验证系统进行的数据传输。我们详细介绍了概念验证的硬件和软件实现,它使用手持移动设备和一系列低成本、低功耗激光器。未来的实验计划将结合前向误差校正和在现实条件下进行更远距离的测试。
摘要 - 深度神经网络(DNNS)在资源约束的IoT设备中不存在,该设备通常依赖于减少的内存足迹和低绩效处理器。虽然DNNS的精度和性能可能会有所不同,而且至关重要,但要以低成本提供高可靠性的训练有素的模型也至关重要。要达到不屈的可靠性和安全水平,必须为电子计算系统提供适当的机制来解决软误差。因此,本文研究了软错误与模型准确性之间的关系。在这方面,考虑到在ARM Cortex-M处理器上运行的精确位刻度变化(2、4和8位),对Mobilenet模型进行了广泛的软误差评估。此外,这项工作促进了使用寄存器分配技术(RAT)的使用,该技术将关键DNN功能/层分配给特定通用通用处理器寄存器库。从超过450万个故障注射中获得的结果表明,大鼠提供了最佳的相对性能,内存利用和软错误可靠性权衡W.R.T.一种更传统的基于复制的方法。结果还表明,Mobilenet软误差可靠性取决于其卷积层的精确度。
摘要:为了在小麦生长季节获得更一致的测量结果,我们构思并设计了一个自主机器人平台,该平台使用空间人工智能 (AI) 在作物行中导航时执行防撞。农学家的主要限制是在驾驶时不要碾过小麦。因此,我们训练了一个空间深度学习模型,该模型可帮助机器人在田间自主导航,同时避免与小麦发生碰撞。为了训练这个模型,我们使用了公开的预标记小麦图像数据库,以及我们在田间收集的小麦图像。我们使用 MobileNet 单次检测器 (SSD) 作为我们的深度学习模型来检测田间的小麦。为了提高机器人实时响应田间环境的帧速率,我们在小麦图像上训练了 MobileNet SSD,并使用了新的立体相机 Luxonis Depth AI 相机。新训练的模型和相机可以实现每秒 18-23 帧 (fps) 的帧速率 - 足够快,让机器人每行驶 2-3 英寸就能处理一次周围环境。一旦我们知道机器人准确地检测到周围环境,我们就会解决机器人的自主导航问题。新的立体摄像头使机器人能够确定与训练物体的距离。在这项工作中,我们还开发了一种导航和防撞算法,该算法利用这些距离信息帮助机器人观察周围环境并在田间机动,从而精确避免与小麦作物发生碰撞。我们进行了大量实验来评估我们提出的方法的性能。我们还将我们提出的 MobileNet SSD 模型获得的定量结果与其他最先进的物体检测模型(例如 YOLO V5 和 Faster 区域的卷积神经网络 (R-CNN) 模型)的定量结果进行了比较。详细的比较分析揭示了我们的方法在模型精度和推理速度方面的有效性。
言语障碍 (SD) 的分类对于治疗患有言语障碍 (SI) 的儿童至关重要。自动 SD 分类可以帮助言语治疗师为农村地区的 SI 儿童提供服务。检测 SD 的自动化技术可以客观评估语音属性,包括发音、流利度和韵律。临床检查和定量评估可以深入了解患者的说话能力和局限性。现有的用于 SD 检测的深度学习 (DL) 模型通常缺乏对不同人群和语音变化的泛化,导致在应用于具有不同语言背景或方言的个体时性能不佳。本研究介绍了一种基于 DL 的模型,用于使用语音样本对正常和异常语音进行分类。为了克服过度拟合和偏差,作者构建了具有 MobileNet V3 和 EfficientNet B7 模型权重的卷积神经网络模型,用于特征提取 (FE)。为了提高性能,他们将挤压和激励块与基于 MobileNet V3 的 FE 模型集成在一起。同样,使用结构修剪技术改进了基于 EfficientNet B7-mod el 的 FE。增强型 CatBoost 模型使用提取的特征区分正常和异常语音。实验分析使用包含 4620 个健康儿童话语和 2178 个 SI 儿童话语的公共数据集进行。比较研究揭示了所提出的 SD 分类模型的卓越性能。该模型的表现优于当前的 SD 分类模型。它可以用于临床环境以支持语言治疗师。使用多样化语音样本进行大量训练可以提高所提模型的通用性。
脑肿瘤死亡率高,治疗选择有限,是全球重大健康问题。这些肿瘤是由脑内细胞异常生长引起的,大小和形状各异,因此,对于医疗专业人员来说,通过磁共振成像 (MRI) 扫描手动检测它们是一项主观且具有挑战性的任务,因此需要自动化解决方案。本研究探讨了深度学习(特别是 DenseNet 架构)自动化脑肿瘤分类的潜力,旨在提高临床应用的准确性和通用性。我们利用了 Figshare 脑肿瘤数据集,该数据集包含 233 名患者的 3,064 张 T1 加权增强 MRI 图像,这些患者患有三种常见肿瘤类型:脑膜瘤、神经胶质瘤和垂体瘤。使用来自 ImageNet 的迁移学习评估了四种预训练的深度学习模型——ResNet、EfficientNet、MobileNet 和 DenseNet。DenseNet 实现了最高的测试集准确率 96%,优于 ResNet(91%)、EfficientNet(91%)和 MobileNet(93%)。因此,我们专注于提高 DenseNet 的性能,同时将其视为基础模型。为了增强基础 DenseNet 模型的通用性,我们实施了一种微调方法,该方法采用了正则化技术,包括数据增强、dropout、批量归一化和全局平均池化,并结合了超参数优化。这种增强的 DenseNet 模型实现了 97.1% 的准确率。我们的研究结果证明了 DenseNet 结合迁移学习和微调对脑肿瘤分类的有效性,凸显了其在临床环境中提高诊断准确性和可靠性的潜力。
·提议的随机差异量化(SDQ)[ICML 2022],一种有效的和有效的混合精确定量量化技术优于·提出了有效的变异感知视觉变压器(VIT)量化框架[TMLR]。这是分析和定位VIT量化变化的第一项工作。我们对VIT的变化的解决方案导致在不同的VIT模型(DEIT,SWIN,SRET)跨Imagenet-1k数据集上的最新精度。·通过核心选择[TMLR]提出一个新的角度,以提高量化感知训练的效果。我们的方法可以在ImageNet-1k数据集上获得4位RESNET-18的68.39%,仅10%子集。
• CPU: • RISC-V 双核 64 位,带 FPU;400MHz 神经网络处理器 • QVGA@60FPS/VGA@30FPS 图像识别 • 板载 ESP32 模块支持 2.4G 802.11。 b/g/n 和蓝牙 4.2 • Arduino Uno 外形尺寸,Arduino 兼容接口 • 板载全向 I 2 S 数字输出 MEMS 麦克风 • 用于 DVP 摄像头的 24P 0.5mm FPC 连接器 • 8 位 MCU LCD 24P 0.5mm FPC 连接器 • 支持自弹式微型 SD 卡座 • 重置和启动按钮以及 3W DAC+PA 音频输出 • 只需连接 USB Type-C 电缆即可完成下载 • 基于卷积神经网络的机器视觉 • 用于机器听觉的高性能麦克风阵列处理器 • 支持 MaixPy IDE、Arduino IDE、OpenMV IDE 和 PlatformIO IDE • 支持用于深度学习的 Tiny-Yolo、Mobilenet 和 TensorFlow Lite
摘要。描述了一种用于分类和检测辣椒植物中植物疾病的新的深度学习模型。它是建立在Mobilenet架构的修改版本上的。该模型通过结合复杂的优化模型和可靠的培训程序来克服了常规诊断工具的高计算成本和限制适应性。该模型大大减少了准确诊断所需的时间和资源,同时有效地管理复杂的疾病表现,诊断精度为97.18%。使用Chilli Leaf图片数据集,数据增强和精细调整技术,该模型显示出在农业环境中实时疾病诊断的希望。该研究强调了高质量图像数据和广泛的培训数据集的重要性,呼吁在各种气候和环境条件下进行进一步评估,以确保鲁棒性和适应性。这项研究为不同农业背景下的基于AI的模型打开了新的机会,有可能导致精确耕作的重大进步。
摘要 — 深度学习的出现大大加速了机器学习的发展。然而,边缘深度神经网络的部署受到其高内存和能耗要求的限制。随着新内存技术的出现,新兴的二值化神经网络 (BNN) 有望降低即将到来的机器学习硬件一代的能量影响,使机器学习能够在边缘设备上进行,并避免通过网络传输数据。在这项工作中,在介绍采用混合 CMOS - 氧化铪电阻存储器技术的实现后,我们提出了将 BNN 应用于心电图和脑电图等生物医学信号的策略,以保持准确度水平并降低内存要求。我们研究了二值化整个网络和仅二值化分类器部分时的内存-准确度权衡。我们还讨论了这些结果如何转化为 Imagenet 任务上面向边缘的 Mobilenet V1 神经网络。这项研究的最终目标是实现智能自主医疗设备。
摘要 — 深度学习的出现大大加速了机器学习的发展。然而,边缘深度神经网络的部署受到其高内存和能耗要求的限制。随着新内存技术的出现,新兴的二值化神经网络 (BNN) 有望降低即将到来的机器学习硬件一代的能量影响,使机器学习能够在边缘设备上进行,并避免通过网络传输数据。在这项工作中,在介绍采用混合 CMOS - 氧化铪电阻存储器技术的实现后,我们提出了将 BNN 应用于心电图和脑电图等生物医学信号的策略,以保持准确度水平并降低内存要求。我们研究了二值化整个网络和仅二值化分类器部分时的内存-准确度权衡。我们还讨论了这些结果如何转化为 Imagenet 任务上面向边缘的 Mobilenet V1 神经网络。这项研究的最终目标是实现智能自主医疗设备。