背景与教育日的活动(2024年10月23日)在KM-GBF馆举行,由联合国教育,科学和文化组织(UNESCO),CBD秘书处,CBD秘书处以及国际自然保护联盟(IUCN)教育与沟通委员会(CEC)(CEC)的旨在支持协商的计划的计划,以支持他们的AL AL DAMPOIATIES,他们旨在支持他们的AL AL DARMASE,以支持他们的AL AL DARMATIE''与Kunming-Montreal全球生物多样性框架的沟通,教育和公众意识,特别是第C条,K节和目标第9、10、10、15、16、21、22和23条第7(o)款。本说明还旨在向谈判者告知制定全球生物多样性教育行动计划的重要性。SBI建议4/8关于传播,教育和公众意识的邀请“联合国教科文组织[,生物多样性和生态系统服务的政府间科学 - 政策平台] [
Guillaume Malpuech,H Min Xiao,J,K Yanpeng Zhang,A和Zhaoyang Zhang A, * A XI XI'jiotong University,教育部的物理电子和设备的主要实验室对于复杂系统的理论物理学,大韩民国大韩民国科学技术大学(UST),基础科学计划,大韩民国大道基础科学计划,D莫斯科物理与技术研究所,俄罗斯Dolgoproudnyi,俄罗斯E沃尔夫汉普顿大学,沃尔夫汉普顿大学,沃尔弗尔·汉弗·沃尔弗尔·霍姆斯特·沃尔弗尔·弗里格·沃尔弗尔·伊斯特·弗里格·沃尔夫·伊斯特·沃尔夫汉俄罗斯的彼得斯堡,俄罗斯H.UniversitéClermontAuvergne,Pascal Institut Pascal,Photon-N2,CNRS,CNRS,Clermont INP,France I Institut i Institut Universitaire de France,Paris,Paris,France j法国J大学中国南京
在本说明中,我们在来年为世界上一些主要经济体的展望提供了简短的摘要。在高利率,不利地缘政治和柔和全球贸易增长的情况下,全球环境仍然具有挑战性。在主要经济体中,只有美国似乎有望在2024年作为富有弹性的家庭支出和仍然紧密的劳动力市场支持活动来实现稳定的增长。欧元区和英国正在随着衰退或经济衰退而调情,但是随着通货膨胀和能源冲击的消退,去年的基础较弱的增长可能会略有下降,并且对降低利率的乐观情绪。尽管日本由于全球贫血需求和实际工资下降而增长速度缓慢,但目标通货膨胀率高于目标,这意味着今年某个时候可能有可能对货币收紧的中央银行政策掉头。中国后的反弹在2023年感到失望,他的面孔因国内消费和房地产部门的疲软而受到逆风,扩大了对政策做出更加令人信服的呼吁。
摘要。在现代条件下,将 ESG 标准纳入资产管理人的投资决策被视为可持续经济发展的关键因素。我们自 2011 年 12 月至 2020 年 12 月期间,对比了基于责任和开放指数的动量-ESG 策略与基于莫斯科交易所大盘指数的动量策略的有效性。我们提出了一种将 ESG 标准整合到动量策略中的算法。我们根据月度回报选择“赢家”和“输家”股票。动量-ESG 策略在 12 个月的时间范围内具有较高的夏普比率,动量策略在 6 个月的时间范围内具有较高的夏普比率。动量-ESG 策略的测试表明,在投资期间,与不考虑 ESG 因素的动量策略相比,其夏普比率效率更高。
摘要:返回中风产生的电磁辐射领域从回流中的流动和动量传递到外太空。由于与垂直返回冲程相关的方位角对称性(圆柱形对称性),辐射场传输的动量仅具有垂直或Z分量。在本文中,研究了返回中风辐射的能量,动量和峰值功率,这是返回冲程电流的函数,返回冲程速度和辐射场的零跨时间。通过数值模拟获得的能量,垂直动量和闪电返回辐射辐射的峰功率获得的结果(所有通过将它们除以100 km处的辐射场峰的平方来归一化的参数)如下:典型的第一个返回率会产生50 µs的辐射量的范围,该频率将在50 µs中散发出频率。 (1.7–2.5)×10 3 j /(v / m)2和轨道垂直动量大约(2.3-3.1)×10-6 kg m / s /(v / m)2。零跨时间为70 µs的辐射场将消散大约(2.6-3.4)×10 3 J /(v / m)2 In Fiferd射线范围的能量,(3.2-4.3)×10-6×10 - 6 kg m / s / s / s /(v / m)
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
摘要近年来对结构化标量涡流束的光学手性和自旋角动量进行了深入研究。这些梁的伪内拓扑电荷ℓ造成其独特特性的原因。是由带有拓扑电荷的标量涡流梁的叠加构建的,圆柱矢量涡流梁是具有空间上不均匀极化分布的高阶庞加尔模式。在这里,我们强调了这些高阶结构梁在偏尾(弱焦点)和非顺式(紧密的聚焦)条件下的光自旋和手性密度的高度可调节和异国情调的空间分布。我们的分析理论可以在任何高阶或杂种庞加莱球体上产生每个点的自旋角动量和光学手性。表明,可调的pancharatnam拓扑电荷ℓp =(ℓa +ℓb) / 2和偏振指数m =(vector涡流梁的vortex beam的ℓb - ℓa) / 2在自定义其旋转和chir式空间分布方面起着决定性的作用。我们还提供了正确的分析方程式,以描述集中的非顺式标量贝塞尔束。
对于小型卫星社区,使用传统实践建立新的卫星星座可能会很昂贵,需要长时间的表现,并且在逻辑上很难完成。已经使用涉及多个独立发射的成员卫星的方法建立了大多数现有的卫星星座。一种可以使小型卫星社区更容易执行涉及其星座的任务的方法是实施使用基于立方体的架构启动的旋转动量交换系绳部署系统,该系统将用于将较小的板上卫星部署到自己的轨道上以支撑恒星。最近的研究集中在评估设计,建立和维持扎根部署的星座中所涉及的主要管理参数和关系。这些参数和关系对于开发潜在星座任务的总体体系结构是必要的,并正在以一种方式进行研究,以确定支持航天器的最佳实践,不仅在Smallsats的水平上,而且对所有规模,数量,位置,位置和应用。
资料来源:西班牙银行、INE、欧盟统计局和欧洲中央银行 (a) 2024 年 6 月西班牙银行宏观经济预测时发布的季度国民账户 GDP 增长率
摘要:轨道角动量 (OAM) 用方位角相位项 exp ð jl θ Þ 描述,具有具有不同拓扑电荷 l 的不受约束的正交态。因此,随着全球通信容量的爆炸式增长,特别是对于短距离光互连,光承载 OAM 由于其正交性、安全性以及与其他技术的兼容性,已证明其在空分复用系统中提高传输容量和频谱效率的巨大潜力。同时,100 米自由空间光互连成为“最后一英里”问题的替代解决方案,并提供楼宇间通信。我们通过实验演示了使用 OAM 复用和 16 进制正交幅度调制 (16-QAM) 信号的 260 米安全光互连。我们研究了光束漂移、功率波动、信道串扰、误码率性能和链路安全性。此外,我们还研究了 260 米范围内 1 对 9 多播的链路性能。考虑到功率分布可能受到大气湍流的影响,我们引入了离线反馈过程,使其灵活控制。