在两年的时间里,路易斯维尔大学医院出现了多重耐药性肺炎克雷伯菌引起的院内感染(M. Raff,未发表数据)。怀疑是 R 因子传播,因为在几种不同的肺炎克雷伯菌血清型中都发现了多重耐药特性(1、11、17)。在本研究中,我们表明,单一 R 因子是造成这种流行病的原因,并且在我们的医院环境中持续存在。脱氧核糖核酸 (DNA)-DNA 杂交用于在所有肺炎克雷伯菌菌株中识别这种 R 因子,并且可能被证明是持续研究这种和未来多重耐药微生物爆发的有用工具。(这项工作是 M.-A. Courtney 提交给路易斯维尔大学研究生院的论文的一部分,部分满足博士学位的要求。)
当我收到学生的联系方式时,我会通过他们的首选方法与联系 - 致电,文字或电子邮件。我们安排一个日期,时间和地点开会,这对他们及其需求很舒适。第一届会议总是了解学习者,他们的目标和目标,并用算术来确定自己的位置。我认为对学习者感到放松是如此重要。我们所有的课程都是学习者的领导,他们想要练习并在我们的课程计划的最前沿提高技能。最被问及主题的是预算,百分比,分数,扩展和下调食谱以及了解利率。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
摘要 本文提出了一种快速边界积分方程方法,用于求解有界多重连通区域到具有圆形狭缝区域的圆盘和环面上的数值保角映射及其逆。该方法基于两个具有 Neumann 型核和广义 Neumann 核的唯一可解边界积分方程。利用 Nyström 方法、GMRES 方法和快速多极子方法相结合,对与映射相关的积分方程进行数值求解。新算法的复杂度为 O(( M + 1 ) n ) ,其中 M + 1 代表多重连通区域的重数,n 表示每个边界组件上的节点数。先前的算法需要 O(( M + 1 ) 3 n 3 ) 运算。一些试验计算的数值结果表明我们的方法能够处理具有复杂几何形状和非常高连通性的区域。本文还给出了该方法在医学人脑图像处理中的应用。
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
PELIICAEN(纳米级离子注入控制和分析研究平台)装置是一种独特的设备,它拥有所有的原位超高真空设备(聚焦离子束 (FIB) 柱、二次电子显微镜 (SEM)、原子力和扫描隧道显微镜 (AFM/STM)),以及它在材料上的纳米结构性能。该装置最近配备了自己的电子回旋共振离子源、使用气动振动绝缘体的新型位置控制平台和快速脉冲装置。它的性能得到了大幅提升,可以选择多种离子,离子注入深度可调至几百纳米,图像分辨率低至 25 纳米,样品上的离子束尺寸低至 100 纳米。凭借所有这些设备,PELIICAEN 装置在执行和分析离子注入和表面改性方面处于国际前沿。
换算系数(与公制单位的近似换算) 换算自 功能 值 长度 英寸 米 除以 39.3701 英寸 毫米 乘以 25.4000 英尺 米 除以 3.2808 体积 立方英尺 立方米 除以 35.3149 立方英寸 立方米 除以 61,024 截面 模数 英寸 2 英尺 厘米 2 米 乘以 1.9665 英寸 2 英尺 厘米 3 乘以 196.6448 英寸 3 厘米 3 乘以 16.3871 惯性矩 英寸 2 英尺 2 厘米 2 米 除以 1.6684 英寸 2 英尺 2 厘米 4 乘以 5993.73 英寸 4 厘米 4 乘以 41.623 力或质量长吨 吨 乘以 1.0160 长吨 公斤 乘以 1016.047 磅 吨 除以 2204.62 磅 公斤 除以 2.2046 磅 牛顿 乘以 4.4482 压力或应力 磅/英寸2 牛顿/米2(帕斯卡) 乘以 6894.757 千磅/英寸2 兆牛顿/米2 乘以 6.8947(兆帕斯卡) 弯曲或扭矩 英尺吨 米 吨 除以 3.2291 英尺磅 公斤米 除以 7.23285 英尺磅 牛顿米 乘以 1.35582 能量 英尺磅 焦耳 乘以 1.355826 应力强度 千磅/英寸2 英寸 √ 英寸) 兆牛顿 MNm 3/2 乘以 1.0998 J-INTEGRAL 千磅/英寸 焦耳/平方毫米 乘以 0.1753 千磅/英寸 千焦耳/平方米 乘以 175.3
使用带网格的 KOVA Glasstic Slide 10 计算细胞/µL: • 对于未离心或纯净的样品,将每个小网格获得的平均细胞数乘以 90 。• 对于浓缩至 1mL 的 10mL 样品,将每个小网格获得的平均细胞数乘以 9 。• 对于浓缩至 0.5mL 的 10mL 样品,将每个小网格获得的平均细胞数乘以 4.5 。• 对于浓缩至 1mL 的 12mL 样品(KOVA 系统),将每个小网格获得的平均细胞数乘以 7.5 。计算示例(使用 KOVA 系统 12mL 至 1mL 方法):
1. 取锅炉/冷冻机的总输出功率。2. 对于供热系统 - 将输出功率乘以 12 得到系统容量的估计值(单位:升),然后除以 250,例如对于 500kW 供热系统:乘以 500 x 12 = 6,000 升 ÷ 250 = 24。因此,添加 24 升 CORE 化学品。3. 对于冷冻/冷却系统 - 将输出功率乘以 15 得到系统容量的估计值(单位:升),然后除以 250。例如对于 250kW 冷冻系统:乘以 250 x 15 = 3,750 升 ÷ 250 = 15。因此,添加 15 升 CORE 化学品。