摘要 隐性性别偏见会给职场女性带来代价高昂且复杂的后果,许多女性报告称自己遭受了性别微侵犯,这导致她们被忽视或不尊重。我们呈现了一个在线桌面虚拟环境,从第一人称视角讲述了男性或女性自我形象的故事,他们要么经历积极要么消极的工作场景。消极场景包括许多来自性别微侵犯分类的例子。与拥有男性自我形象的参与者相比,与女性自我形象有过消极职场体验的参与者的隐性性别偏见水平显著降低。有证据表明,在消极条件下,女性自我形象表现出同理心和观点采择。无论自我形象的性别如何,积极的职场场景体验都没有表明隐性性别偏见显著减少。我们讨论了这些发现的含义,并就减少隐性偏见提出了虚拟环境技术和场景的建议。
Start North 网络加速了新技术的学习和应用,以应对全球可持续发展的挑战。该网络由世界领先的大学、公司和非营利组织组成,例如 Ambitious Africa,这是一项将非洲和北欧青年聚集在一起,将非洲推向新高度的倡议。除了 5G Mokki 科技空间外,Start North 网络还提供各种类型的活动、计划和方法,以补充当前的教育体系。5G Mokki 是 Start North 的商标。
● 除北卡罗来纳州标准外,还强调符合大学理事会要求的技能 ● 始终坚持超越北卡罗来纳州标准课程的成就标准 ● 旨在培养学生在 AP 英语课程中取得成功的能力 ● 在学生深入学习英语时培养批判性思维和解决问题的能力 ● 需要综合多种来源的综合研究作业 ● 关注高级语法和写作技巧 ● 使用强调分析和理论的复杂文本 ● 分数较少
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
将患者肿瘤组织样本在细胞外基质 + 化学确定培养基中培养成肿瘤类器官。PDO 被鉴定为 Hoechst 阳性细胞簇,并使用荧光活力染色分别确定每个 PDO 的活细胞和死细胞数量。对每种化合物使用 3 个剂量进行药物筛选,并计算 TO-PRO-3 活细胞测量值的曲线下面积倒数以量化反应。使用 Tempus xT 和全转录组分析对类器官和配对患者肿瘤(如有)进行 NGS。通过我们的标准流程处理所得数据,以识别可靶向的突变、新抗原、CNV 和融合。
我们的NAVSUP和海军供应军团由专门的军事和平民人员推动我们的全球任务。鉴于对我们人民提出的非凡要求,他们的福祉是我们的最高优先事项。我们相信透明度和提升障碍,以改善生活质量并改善以减轻压力并产生最大的参与度。此外,我们相信机会平等,这是由一个建模思想,经验,公正,公正性和包容性多样性的环境所促进的。要实现这些目标并与CNO的2023年导航计划保持一致,我正在扩大重点,以加速供应兵团领导者的发展和现成的相关学习。
重要提示:本特别报告仅供参考和教育目的,基于截至 2023 年的数据。由于 George Gilder 对所有 Private Reserve 建议都采用严谨的卖出策略,因此本报告中的一项(或多项)投资可能在您收到时已经售出。因此,在阅读最新一期的 Private Reserve 或 George Gilder 的电子邮件更新之前,请勿买卖任何投资。
随着大型语言模型(LLM)的成功,将视觉模型融入了LLM,以建立视觉语言基础模型最近引起了人们的兴趣。但是,现有的基于LLM的大型多模式模型(例如,视频播放,视频聊天)只能摄入有限数量的框架以进行简短的视频理解。在这项研究中,我们主要专注于设计一个有效有效的模型,以进行长期视频理解。我们建议以在线方式处理视频并将过去的视频信息存储在存储库中,而不是像大多数现有作品一样尝试同时进行更多框架。这使我们的模型可以参考历史视频内容以进行长期分析,而不会超过LLM的上下文长度约束或GPU内存限制。我们的内存库可以以现成的方式被缝制到当前的多模式LLMS中。我们在各种视频理解任务上进行了广泛的实验,例如长期介绍,视频问题答案和视频字幕,我们的模型可以在多个数据集中实现最新的性能。
了解气候变化需要哪些科学概念?Lorna E. Jarrett A,George Takacs A,Brian Ferry B介绍作者:Lorna E. Jarrett(Lorna@una@uow.edu.au)一所工程物理学院定性分析,物理教育研究摘要摘要一大批国际研究表明,学校学生经常对气候变化科学有误解。为了更详细地调查学生对这个复杂主题的理解,正在为气候变化的基础的关键科学概念开发概念清单(CI)。本文报告了此过程的第一阶段:确定应包括哪些概念。进行了一项Delphi研究,咨询了18个学术知识的学者,研究人员和高中教师。也进行了文献综述,以确定哪些概念对于理解气候变化很重要。CI涵盖的最终概念清单是这些概念的综合。澳大利亚科学与数学教育会议会议录,墨尔本大学,2011年9月28日至9月30日,第89-94页,ISBN编号978-0-9871834-0-8。本研究的背景环境此处报道的研究是一项较大的研究的一部分,旨在调查高中生关于气候变化概念的想法及其在上下文中应用这些知识的能力。(2008),Gray等。它采用多种方法:概念清单(CI),概念映射和访谈。本文介绍了用于确定CI中包含哪些概念的方法以及所得的概念列表。此处报道的研究获得了沃隆港大学的批准。A large number of studies carried out over the past two decades have shown that school students' understanding of the science of climate change is limited and that misconceptions are common (Boyes & Stanisstreet, 2001; Fisher, 1998; Gowda, Fox, & Magelky, 1997; Hansen, 2010; Koulaidis & Christidou, 1999; Kurup, 2003; Plunkett & Skamp, 1994; Rye, Rubba, & Wiesenmayer,1997年,Schultz,Shepardson,Niyogi,Choi和Charusombat,2009年;提出的原因包括学生对潜在的科学概念的知识或在不同背景下学习的知识的问题(Koulaidis&Christidou,1999;Österlind,2005年);但是,这尚未直接测试。我们的研究旨在解决研究文献中的这一差距。概念清单(CIS)是旨在用一个主题诊断学生概念困难的多项选择评估工具(Libarkin,2008)。它们已在科学教育中广泛使用,以研究学生关于与更广泛主题有关的许多概念的想法,并且可以针对大型参与者群体进行管理。独顺式的一个目的是测试误解的普遍性,因为分散注意事件被编写以反映常见的误解。根据Richardson(2004)的说法,CI开发的第一阶段是决定要测试哪些概念。 (2005),Herman等。根据Richardson(2004)的说法,CI开发的第一阶段是决定要测试哪些概念。(2005),Herman等。(2005),Herman等。为此,作者建议使用Delphi研究。Delphi研究已由Danielson(2005),Goldman等人使用。(2010)和Streveler等。(2003)对于CI开发的这一阶段。Delphi方法Delphi方法的基本特征包括调查的多次迭代,具有控制反馈,参与者的匿名性,以及每次迭代之后,以统计响应摘要的形式向参与者提供反馈。参与者可以使用此反馈来修改他们的反应(Linstone&Turoff,1975; Whitman,1990)。Clayton(1997)断言,这是一种“系统的,严格和有效的方法,旨在引起有效且有效的用户友好答案”(第374页)。