Important roles of other nucleotides: • Energy rich (high energies of hydrolysis, but kinetically stable) besides ATP, includes: GTP, CTP, UTP • Carrier molecule (key intermediates in metabolism) UDP-sugars, CDP-lipids, NADH, FAD • Secondary messengers (cAMP, cGMP) • Other cofactors for enzymes
核苷酸中的磷酸基团在DNA和RNA的结构中起重要作用。它为分子提供负电荷,这对于维持DNA双螺旋结构的稳定性很重要。磷酸基团还形成了核酸链的骨干,将单个核苷酸通过磷酸二酯键将其连接在一起。除了它们在DNA和RNA中的作用外,核苷酸在许多其他细胞过程中都起着重要作用。它们参与了富含能量的分子(例如ATP)的合成,ATP被用作细胞过程的能量来源。核苷酸也用作辅酶,它们是有助于酶执行其功能的分子。例如,NAD+和FAD是两个重要的辅酶,它们源自核苷酸[2]。
核酸被定义为与生物聚合物有关的生物聚合物,这些生物聚合物参与了从一代到另一代的遗传信息的保存和传播。构成核酸的核苷酸与糖在3'和5'位置之间的磷酸二酯键相连。连接称为3'-5'磷酸二酯键。
核苷和核苷酸构成核酸的基本构件,生命的基本分子成分通过传输和存储遗传信息在遗传中起着至关重要的作用(Minchin和Lodge,2019)。在这里,我们汇总了该研究主题的贡献,并将解决合成,表观遗传学和治疗方法的问题(Liu等人; Sabat等。;伯迪斯; Naciuk等。; Sergeeva等。)。DNA表达取决于复制后化学修饰后的核苷酸。其中之一是胞嘧啶嘧啶环在C-5处仅发生的DNA甲基化,作为CpG二核苷酸启动子中的表观遗传标记。甲基化水平直接连接到诸如癌变之类的生物学过程的促进或功能障碍。破坏甲基化平衡的因素问题引起了极大的兴趣,Liu等人。探索了金属在DNA甲基化水平上的作用。作者使用原位杂交(FISH)方法来确认金属离子对DNA甲基化的影响。核酸还参与了许多细胞过程,例如细胞信号传导(ATP作为能源和cAMP作为细胞内的第二个使者传输信息),使用构成构建体块传递正确的氨基酸或重复过程(DNA复制或转录到Messenger RNA)的转移RNA的蛋白质翻译。最好的例子是发现和生产M -RNA疫苗,例如反对Covid -19的一种。通过分子生物学技术(例如聚合酶链反应(PCR))合成核酸的合成,使得能够以良好的限制和舒适的数量获得大分子多样性。几种疫苗已经进行了传染病的临床试验(流体疾病,寨卡病毒,尼帕病毒,呼吸道合胞病毒),遗传疾病和癌症(Khan等,2023)。DNA是由4个核碱基编码的系统,近年来已被视为存储信息以满足当前服务器的能源成本的宝贵媒介。DNA具有足够的稳定
我们描述了 C-5 吲哚标记嘧啶和 C-8 吲哚标记嘌呤核苷亚磷酰胺的合成及其掺入长度为 15 个碱基对的双链 DNA 的过程。在测试的 23 种序列修饰中,有两种修饰在生理盐条件下诱导 DNA 双链采用 Z 型左手构象,从而绕过了左手 Z-DNA 结构通常所需的特定序列。这些修饰的影响因接头类型而异:柔性丙基接头与刚性炔丙基接头相比表现出不同的效果。值得注意的是,直接位于限制位点上或附近的修饰强调了接头刚性在控制 DNA 构象中的关键作用。具体而言,柔性接头引起的构象变化会影响核酸酶和限制性内切酶的切割,从而降低序列特异性。相反,刚性接头抑制了这种影响。此外,我们的研究结果表明,使用柔性丙基接头用吲哚连接核苷酸修饰的核酸双链体在较长的 DNA 序列中具有明显的形成 BZ 或 Z 样区域的趋势。更高密度的修饰甚至可能在整个双链中诱导完整的 Z 样构象。这些修饰的核苷酸具有开发新型反义疗法的潜力,并为体外筛选针对扭曲的 B-DNA、BZ-DNA 和 Z-DNA 结构的小分子引入了有价值的工具。
摘要 肿瘤形成与大多数复杂的遗传性状一样,是由多种突变的共同作用所驱动。在核苷酸水平上,此类突变称为癌症驱动核苷酸 (CDN)。全套 CDN 是了解和治疗每位癌症患者所必需的,甚至可能是足够的。目前,只有一小部分 CDN 为人所知,因为肿瘤中产生的大多数突变都不是驱动因素。我们现在基于癌症进化在数百万个体中大量重复这一事实发展了 CDN 理论。因此,任何有利突变都应该经常出现,反之,任何不经常出现的突变要么是过客突变,要么是有害突变。在 TCGA 癌症数据库(样本量 n =300–1000)中,点突变可能在 n 名患者中 i 名患者中复发。本研究探讨了广泛的突变特征,以确定仅由中性进化驱动的复发限度 (i *)。由于没有中性突变可以达到 i * =3,因此所有在 i ≥3 处重复的突变都是 CDN。该理论表明,如果每种癌症类型的 n 增加到 100,000,则几乎可以识别所有 CDN。目前,只有不到 10% 的 CDN 被识别。当识别出所有 CDN 时,就可以了解每种情况下肿瘤发生的进化机制,而且重要的是,基因靶向治疗将在治疗上更加有效,并且能够抵御耐药性。
热应激是影响全球小麦产生和生产力的关键因素。在这项研究中,在500种研究的种质系中,分析了126种小麦基因型在十二个不同的环境条件下生长的小麦基因型。使用五个生化参数,包括谷物蛋白含量(GPC),谷物淀粉糖含量(GAC),谷物总溶解糖(TSS),晶粒铁(FE)和六含锌(Zn)含量分析(六)多型GWAS(M),使用35 K单核苷酸多态性(SNP)基因分型测定和性状数据(包括谷物蛋白含量(GPC),谷物淀粉糖含量(GAC),谷物总糖(TSS),六个多型GWAS(M)含量GWAS(M),这揭示了与晶粒质量参数相关的67个稳定的定量性状核苷酸(QTN),解释了在热应激条件下的3%至44.5%的表型变化。通过考虑至少三个GWAS模型和三个位置的共识结果,最终的QTN被降低至16个,其中12个是新的发现。值得注意的是,分别通过高素质等位基因聚合酶链反应(KASP)方法验证了两个分别与晶粒Fe和Zn相关的新标记,即AX-94461119(AX-94461119(染色体2A)和AX-95220192(染色体7D)。候选基因,包括含P环的核苷三磷酸水解酶(NTPases),Bowman-Birk型蛋白酶抑制剂(BBI)和NPSN13蛋白。这些基因可以作为增强质量特征和未来小麦改善计划中耐热性的潜在目标。
摘要:利用 CRISPR/Cas 系统组件的基因组编辑方法已广泛应用于分子生物学、基础医学和基因工程。一种有前途的方法是通过修改基于 CRISPR/Cas 的基因组编辑系统的组件来提高其效率和特异性。在这里,我们设计并化学合成了含有修饰核苷酸(2'-O-甲基、2'-氟、LNA — 锁定核酸)或在某些位置含有脱氧核糖核苷酸的向导 RNA(crRNA、tracrRNA 和 sgRNA)。我们比较了它们对核酸酶消化的抵抗力,并检查了由这些修饰向导 RNA 引导的 CRISPR/Cas9 系统的 DNA 切割效率。用 2'-氟修饰或 LNA 核苷酸替换核糖核苷酸增加了 crRNA 的寿命,而其他类型的修饰不会改变它们的核酸酶抗性。 crRNA 或 tracrRNA 的修饰可保持 CRISPR/Cas9 系统的有效性。否则,具有修饰 sgRNA 的 CRISPR/Cas9 系统会显著降低 DNA 切割有效性。2'-氟修饰 crRNA 的系统 DNA 切割动力学常数较高。crRNA 的 2'-修饰还可降低体外 dsDNA 切割的脱靶效应。