Advanced-PP 1100N 等级及其添加物符合美国 FDA 法规 21CFR 177.1520 烯烃聚合物和欧洲法规 (EU) 10/2011(及其修订)。具体信息可根据要求提供。
摘要:本文研究了石墨烯和抗固定锌二硫代磷酸酯(ZDDP)的摩擦学作用。摩擦测试已在摩擦学测试仪上进行,该测试仪在摩擦,滑动运动中作为球和圆盘组件作战。测试在1000 m的滑动距离内用10 N负载进行。测试中使用了Tialn涂层的HS6-5-2C钢盘和100CR6钢球。测试是在润滑条件下用石墨烯和/或ZDDP的聚(α)烯烃油PAO 8进行的。使用扫描电子显微镜研究了TiALN涂层的化学成分,并观察到圆盘和球上的磨损标记。使用具有干涉模式的共聚焦显微镜在摩擦测试之前和之后分析样品的几何结构。结果表明,将ZDDP和石墨烯添加到聚(α)烯烃油中对降低摩擦系数有影响。
姜勇洙教授 电子邮件:kangys@hanyang.ac.kr 电话:+82.2.2220.2336 教育背景 塔夫茨大学 博士学位 1986 韩国科学技术院(KAIST)硕士学位 1978 首尔国立大学 学士学位 1976 研究兴趣 染料敏化太阳能电池、气体分离膜、促进传输、功能聚合物 职业生涯 2020 年至今,汉阳大学能源工程系名誉教授 2018 – 2020 年,汉阳大学能源工程系杰出教授 2010 – 2018 年,汉阳大学能源工程系教授 2008 – 2015 年,下一代染料敏化太阳能电池中心主任 2005 – 2009 年,汉阳大学化学系教授工学学士,汉阳大学 1998 – 2005,促进运输膜研究中心主任,1998 – 2005,韩国科学技术研究院(KIST) 1992 – 1993,美国国家标准技术研究院 专业活动及奖项 2017,‘第5届白南学者奖’,汉阳大学 2015,‘韩国最佳成就奖’,未来创造科学部 2011,‘上岩聚合物奖’,韩国聚合物学会 2010,‘年度校友’奖,塔夫茨大学 2004,《膜科学杂志》编辑委员会 2005 – 2007,《大分子研究》主编 2003,韩国聚合物学会学术成就奖 2002,韩国聚合物学会最佳论文奖韩国科学技术协会联合会 2001 年,韩国科学工程基金会月度科学家 撰写了 320 篇科学论文、30 项专利 精选出版物 1. 探索金纳米团簇敏化太阳能电池中的界面事件:深入了解团簇尺寸和电解质对太阳能电池性能的影响,J. Am. Chem. Soc.,138,390 (2016) 2. 平面铅卤化钙钛矿太阳能电池的界面退化,ACS Nano,10,218 (2016) 3. 离子液体 BMIMBF4 中 AgO 纳米粒子表面的加速 CO2 传输,Sci. Rep.,5,16362 (2015) 4. Ag 纳米粒子的表面电荷密度与吸附的丙烯量之间存在强线性相关性,J. Mater. Chem. A,2,6987 (2014) 5. 增强石墨烯的电荷转移特性用于染料敏化太阳能电池中的三碘化物还原,先进功能材料,21,19,3729 (2011) 6. 银纳米粒子的表面能级调节用于促进烯烃运输,应用化学国际版,50,13,2982 (2011) 7. 部分带正电的银纳米粒子在促进烯烃/石蜡分离膜运输中的新应用,材料化学,20,4,1308 (2008) 8. 对苯醌活化的银纳米粒子部分极化表面与烯烃的相互作用及其对促进烯烃运输的影响,先进材料, 19,475(2007)9。利用离子液体控制银聚合物电解质中的离子相互作用及其对促进烯烃传输的影响,材料化学,18,7,1789 (2006)
LIST OF ABBREVIATIONS CV Calorific Value EF Existing RDF Facilities in Vicinity EIA Environmental Impact Assessment FGD Focus Group Discussions GIS Geographic Information System INAPLAS Asosiasi Industri Olefin, Aromatik dan Plastik Indonesia (Indonesian Olefin, Aromatic and Plastics Industry Association) MCA Multi-Criteria Analysis MCDA Multi-Criteria Decision Analysis MCDM Multi-Criteria Decision-Making MoEF Ministry of Environment and Forestry MoU Memorandum of Understanding MSME Micro, Small, and Medium Enterprises MSW Municipal Solid Waste MW Megawatt NPK Nitrogen, Phosphorus, and Potassium P Population in the Nearest City PLN Perusahaan Listrik Negara PLTU Pembangkit Listrik Tenaga Uap (Power Plant) POT Potential Off-takers in Vicinity PS Potential Raw Material RDF设施的供应商pt persoan terbatas pt smi persoan terbatas sarana sarana多基金会可能会冒着数据rdf拒绝源性供应源的供应源性燃料SIG SIG SEGENONESIA INDONONESIA INDONONESIA INDINDONONESIA INDINSIPN SISTEMN SISTEMN SISTEMN SISTEMI INFORMANSI INFOLSASI INFORMANSI INFORMANSINICTINCLAN NASTEMANT PENGEROLAN NASINEDS SYSTEM(NASTEM)的信息( Pembuangan Akhir(垃圾填埋场)TPST tempat Pembuangan Sampah Terpadu(综合垃圾填埋场)TSR TSR热代理率UPT单位Pengelola Teknis(技术管理单位)V量/大小
在2021年,苏格兰企业委托研究以目前的格兰格茅斯利益相关者的地位和计划在经济活动中的氢化计划,说明了集群的氢化脱碳情景,与当时的国家战略保持一致。该研究的主要见解包括发现未减弱的氢已经作为聚合物和烯烃制造的共同产品产生,并在集群中使用,这在很大程度上是自给自足的(“自供应”)。因此,有明显的机会可以将可持续的氢整合到集群中的过程和能源系统中。由于缺乏基础架构和燃料和物流/运输的市场准备选择,因此对用户对氢的需求程度尚不清楚,以及推动氢气吸收的价格溢价。
•桶温度:190-220°C•霉菌温度:20-30°C的存储和处理:袋子应在50°C以下的温度下存放在干燥和无尘的环境中,并防止直接暴露于阳光和热量,以避免质量恶化。监管要求:制造的M0662D符合IS 10146中指定的要求的“聚乙烯规范,可安全使用,可与FoodStuff,Pharmaceutical&饮用水接触”。此外,此级配方中添加的添加剂将添加到“聚丙烯,聚乙烯及其共聚物的阳性成分列表中,以安全地与FoodStuffs&Pharmaceuticals的安全使用,因为它是16738:2018:2018。一般而言,该等级中使用的添加剂和成分与FDA:CFR标题21,177.1520,Olefin Polymers的要求一致。
机器人对颗粒和糊状材料的操作采用多模式AI并快速重新任务和机器人敏捷性的途径。处理氢涡轮机上CMC保护性涂料的处理添加剂制造过程的自动CO2排放计算:支持工业脱碳的方法优化的增强加固学习剂用于网络防御操作(奥兰多)使用纳米电体增强型磁性电动机的磁性磁性型型型号的磁性电动机高级电动机制造单元格智能缺陷分析和产品质量保证的修复(SmartDarpqua)通过分析网格互相网络安全
APAO的问题之一是用于生产它们的Ziegler-Natta催化剂。这些催化剂的多个活性位点允许在产生的粘合剂中进行多种结构。金属新世是一种“单位点”催化剂,可以精确控制所得烯烃粘合剂的结构和分子量。这允许精确控制其性能的所有方面的设计师胶粘剂。例如,生产者可以控制非晶与结晶聚合物段的比率。这对于定制聚合物的特定粘附和凝聚力可能很有用。仔细设计化学的设计允许延迟结晶,这将出色的初始锚固结合到具有高内聚力的底物上,随着时间的推移而建立。同时,甲金属实现了狭窄的分子量分布,从而可以对粘度进行优越的控制。对这些各种因素的个性化管理可以产生具有非常具体且可预测的性能特征的粘合剂。
1.zheng W#,Yamada SA#,Hung St,Sun W,Zhao L,Fayer MD。增强了介孔二氧化硅中的Menshutkin SN2反应性:表面催化和限制的影响。美国化学学会杂志,2020,142(12):5636-5648。2.MA,Z.,Zheng,W。*,Sun,W。*,Zhao,L。通过甲基功能性[N1,1,1,1] [C10SO4]添加剂增强H2SO4催化的C4烷基化的C4烷基化。AICHE Journal,2023,E18179。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。 AICHE Journal,2022,68(7),E17698。 4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。 AICHE Journal,2022,68(4),E17556。 5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。 AICHE期刊。 2021,67(10):E17349。 6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。AICHE Journal,2022,68(7),E17698。4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。AICHE Journal,2022,68(4),E17556。5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。AICHE期刊。2021,67(10):E17349。6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。6.Zheng W,Sun W,Zhao L等。了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。AICHE Journal,2018,64(3):950-960。7.Zheng W#,Liu C#,Wei X等。使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。化学工程科学,2023,267:118329。8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。化学工程科学。2022,247:117024。9.zheng W,Sun W,Zhao L,Qian F.建模由疏水二氧化硅纳米孔中的甲基咪唑的固体/液体界面特性。化学工程科学。2021,231:116333。10.Zheng W,Sun W,Zhao L等。 了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。 化学工程科学,2019,205:287-298。 11.zheng W#,Cao Piao#,Sun W,Zhao L等。 用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。 化学工程杂志。 2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。10.Zheng W,Sun W,Zhao L等。了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。化学工程科学,2019,205:287-298。11.zheng W#,Cao Piao#,Sun W,Zhao L等。用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。化学工程杂志。2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。2019,377:119578。12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。12.Zheng W,Sun W,Zhao L等。使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。化学工程科学,2018,186:209-218。13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。13.Zheng W,Sun W,Zhao L等。基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。化学工程科学,2018,183:115-122。14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。14.Zheng W,Sun W,Zhao L等。使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。化学工程科学,2017,166:42-52。15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。15.Zheng W,Sun W,Zhao L等。通过离子液体微乳液对纳米级金属有机框架的可控制备。工业与工程化学研究,2017年,第56(20):5899-5905。16.Zheng W,Zhao L,Sun W,QianF。了解纳米级硅孔中甲基咪唑的限制效应和动力学。物理化学杂志C. 2021,125(13):7421-7430。17.Wang Z#,Zheng W#,Li B等。在共价有机框架中限制了离子液体,朝着高安全锂金属电池的合理设计。化学工程杂志,2022,433:133749。
从废物塑料和轮胎中测定热解油中的烯烃对于优化热解过程至关重要,尤其是在圆形经济方面进一步先进的这些油。识别烯烃,即使使用GC×GC等高分辨率技术,也没有TOF-MS具有挑战性,这允许修改电离步骤。当前,确定塑料热解油中烯烃的唯一方法是GC-VUV,最近标准化为ASTM D8519。但是,对于许多从事塑料回收工作的研究团队来说,TOF-MS和VUV在条件中不起作用。本文引入了一种简单的方法,用于在AGNO 3 /SIO 2上选择性微尺度吸附,然后进行GC×GC-FID分析。烯烃在去除前后各个碳氢化合物群中的色谱区损失间接确定。仅需要50μl样品和15分钟的样品分离。我们的方法得到了广泛的验证,并可靠地确定了在轻度氢处理后,来自塑料和轮胎及其产品的多种热解油中的烯烃含量。对于所有通过热化学过程进行塑料回收利用的研究人员和工业公司来说,它负担得起,因为它不需要MS检测器。