摘要 蛋白质的正确折叠对于维持功能性活细胞至关重要。因此,蛋白质的错误折叠和聚集与多种疾病有关,其中非天然分子间相互作用形成具有低自由能的大型高度有序的淀粉样蛋白聚集体。一个例子是阿尔茨海默病 (AD),其中淀粉样蛋白-β (Aβ) 肽聚集成淀粉样蛋白原纤维,这些原纤维在 AD 患者的大脑中沉积为神经斑块。淀粉样蛋白原纤维的成核是通过形成较小的成核前簇(即所谓的低聚物)进行的,这些低聚物被认为具有特别的毒性,因此在 AD 病理学中具有潜在重要性。Aβ 聚集的详细分子机制知识对于设计针对这些过程的 AD 治疗非常重要。然而,由于低聚物物种的丰度低且多分散性高,因此很难通过实验研究它们。本文使用自下而上的生物物理学在受控的体外条件下研究了 Aβ 低聚物。主要使用天然离子迁移质谱法研究高纯度重组 Aβ 肽,以监测水溶液中低聚物的自发形成。质谱法能够分辨单个低聚物状态,而离子迁移率则提供低分辨率结构信息。这与其它生物物理技术以及理论建模相辅相成。还研究了调节内在因素(如肽长度和序列)或外在因素(如化学环境)的低聚物。研究了与两个重要的生物相互作用伙伴的相互作用:伴侣蛋白和细胞膜。我们展示了 Aβ 低聚物如何组装并形成可能与继续生长为淀粉样蛋白原纤维有关的延伸结构。我们还展示了不同的淀粉样蛋白伴侣蛋白如何与不断增长的聚集体相互作用,从而改变和延迟聚集过程。这些相互作用取决于伴侣和客户肽中的特定序列基序。另一方面,膜模拟胶束能够稳定 Aβ 寡聚体的球状致密形式,并抑制形成淀粉样纤维的延伸结构的形成。这可能有助于体内毒性物质的富集。与膜模拟系统的相互作用被证实高度依赖于 Aβ 肽异构体和膜环境的特性,例如头部电荷。还展示了如何添加设计的小肽结构来抑制膜环境中 Aβ 寡聚体的形成。
炎症反应是对防御病原体的先天免疫力的重要组成部分。传染性囊泡疾病(IBD)是鸡最重要的免疫植物疾病,是由传染性囊泡病毒(IBDV)引起的。急性炎症是IBD的典型致病过程,但是,基本机制尚不清楚。在这里,我们报告IBDV在体内和体外诱导明显的炎症反应。此外,病毒VP2被确定为重要的炎症刺激。可以观察到IBDV VP2可以激活NF-κB信号通路,然后增加IL-1β的产生。详细说,IBDV VP2与髓样分化的主要反应基因88(MyD88)相互作用,增强了MyD88的低聚和MyD88复合物的组装,这是导致NF-κB信号激活和IL-1β产生的一个重要元素。更有意义地,残基253/284的病毒VP2通过调节VP2和MYD88之间的动作强度以及以下MYD88-NF-κB-κB-IL-1β信号通路,通过调节VP2和MYD88之间的相互作用强度,参与IBDV诱导的炎症反应。这项研究揭示了一种触发IBDV感染期间炎症的分子机制,这对于更深入地了解IBDV的致病机制具有重要意义。
寡糖是具有广泛应用的重要类别。生物学,寡糖是活细胞上的识别或鉴定位点,被认为具有生物学活性和潜在的治疗作用(Muanprasat和Chatsudthipong 2017)。,此外,寡糖已被用作多糖的模型化合物:大提琴或奇托 - 寡聚物的单晶提供了纤维素和几丁质晶体结构的必要信息(Buleon和Chanzy 1978; Cartier等1978; Cartier等。1990; Persson等。 1992; Helbert and Sugiyama 1998)。 尤其是,Chanzy及其同事清楚地表明了基于电子显微照片和电子衍射图在由纤维素,几丁质和奇托斯氏菌低聚物制成的单晶上的链条取向(Buleon和Chanzy 1978; Cartier Cartier1990; Persson等。1992; Helbert and Sugiyama 1998)。尤其是,Chanzy及其同事清楚地表明了基于电子显微照片和电子衍射图在由纤维素,几丁质和奇托斯氏菌低聚物制成的单晶上的链条取向(Buleon和Chanzy 1978; Cartier
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.27.634983 doi:biorxiv Preprint
。CC-BY-NC-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 28 日发布了此版本。;https://doi.org/10.1101/2025.01.27.634983 doi:bioRxiv 预印本
大量患有某些神经退行性疾病的患者被称为tauopathies,可能在其大脑中表现出病理tau蛋白聚集体。这类疾病包括阿尔茨海默氏病(AD)。在AD中,诸如PHOS磷酸化,糖基化,截断以及随后分解为低聚物,配对的螺旋细丝(PHFS)和神经纤维纤维缠结(NFTS)之类的翻译修饰与认知能力下降和神经脱落相关。结果,tau低聚物已经成为AD和TAUO病原体中的主要有毒物种。tau低聚物是可溶的,自组装的tau蛋白,在原纤维之前形成,已被证明在神经元细胞死亡中起关键作用,并在动物模型中诱导神经变性。在这篇简洁的综述中,我们整理并总结了与Tau低聚物形成有关的文献及其在阿尔茨海默氏病中的作用。其次,我们探讨了锌离子(Zn²⁺)在tau聚集中的关键作用,因为研究表明锌会诱导可逆的tau寡聚化并可能导致tau高磷酸化。锌的浓度至关重要,因为过高的水平可以促进有害的tau聚集,而正常水平对于生理功能至关重要。我们还检查了可以调节tau聚集的天然和化学化合物,最后,我们讨论了tau蛋白如何在神经元中进行液态液相分离(LLP),从而形成液滴,后来可以发展为有毒的低聚物,这是AD的主要标志。我们提到了一些影响tau llps和聚集的分子,例如蛋白质,核酸和金属离子。
神经退行性疾病是全球残疾的主要原因,帕金森氏病(PD)是增长最快的神经系统疾病。在2019年,全球估计表明,有超过850万人患有PD的人。与衰老紧密相连,预计到2040年将翻一番,对整个公共卫生系统和社会造成了很大的压力(https://www.who.int/news-news-roos-rooo m/fact-seets/fact-sheets/fact-sheets/delets/parkinson-disease)。迄今为止,没有血液检查,脑扫描或其他测定方法可以用作PD的确定诊断测试,目前的诊断方法主要依赖于运动症状和神经影像学的专家临床评估[1]。不幸的是,到诊断时,该疾病已经发展到一个相对先进的阶段,在本质中,大约60%的多巴胺能神经元在不可逆地丢失。在此阶段,延迟疾病进展可能为时已晚。因此,迫切需要在早期阶段检测PD的正交分子诊断方法。pd在病理上以蛋白质聚集体在受影响的神经元中的积累,主要由α-突触核蛋白(αS)组成[2,3]。αS的低聚物,而不是神经淀粉样蛋白包含物,被认为是毒性获得的实际致病罪魁祸首,改变了细胞骨架结构,膜通透性,膜流入,钙涌入,活性氧,活性氧,突触触发和神经元兴奋性[4,5]。这导致了与可溶性单体αs不良的交叉反应,这在CSF中的确更为丰富[4,14,15]。有证据表明,与非PD对照相比,PD患者的脑脊液(CSF)中αS低聚物的升高升高,表明它们在该生物FLUID中的水平可以用作PD的生物标志物,为诊断提供了机会[6-8]。然而,我们缺乏对αs低聚物结构的知识,以及它们的短暂性,异位和动态性质,使他们的跟踪和定量成为一项具有挑战性的任务。αs的抗体的产生和使用已成为首选选项,作为诊断和治疗目的的特定元素,例如抑制蛋白质聚集[9]。因此,在早期研究中,CSF中的αS聚集体和其他生物学流体(如血浆或血清)的检测依赖于诸如ELISA [10-12]或CLIA [13]等免疫测定的检测,其抗体通常针对αs s s s s s s s s s s s s s s s s s s s s。因此,这种方法显示出很大的可变性和有限的可靠性[16]。还采用了一些其他已建立的技术来检测有毒的低聚物,例如免疫组织化学,接近连接测定,基于Luminex的测定法,这也需要抗体[17,18]。同样,最近的策略同样依赖于将可用的抗体纳入具有不同感应构型(光学,电化学等)的不同生物传感器原型中。所有这些最终都可能遭受与使用这些受体相同的缺点。基于DNA的适体[19]最近为αs的低聚形式产生了另一种生物受体[20],尽管它们也显示出对Aβ1-40低聚物的识别。超敏感蛋白扩增测定法的最新进展,例如蛋白质不满意的环状扩增(PMCA)和实时Qua King诱导的转化率(RT-QUIC),该转化率(RT-QUIC)最初是针对人类疾病疾病的诊断,已显示出可吸引蛋白质聚集的有希望的结果,该蛋白质与患者的识别和分流相关[7] [7] [7] [7] [7]。但是,它们在常规DI不可知论中的临床实施中也表现出重大局限性。首先,不可能知道哪种是在反应中放大的特定αS物种,因此,分子生物标志物在
这些趋势也在文化遗产保护的范围内逐渐被采用,这些趋势将科学家和工业参与者与最终用户(艺术策展人,保护者,博物馆,收藏等)聚集在一起。以及社会科学与人文科学。文化遗产在公民维护良好时可以充当社会经济福利的驱动力,但是迫切需要实施“绿色”材料和可持续方法,用于补救和预防性保护8 - 12 - 12-12的可移动和不可移动的艺术作品。的确,即使与其他部门相比,它不涉及大量生产,但文化遗产保存是具有较高社会影响的一部分,并且是旨在为社会提供弹性的框架的一部分,激发了可持续的实践。此外,艺术保存是由专业人士(修复者,策展人)进行的,他们在使用传统化学物质恢复人工制品时会面临安全风险,例如,一些基于石油的溶剂,硅氧烷或可可胺表面活性剂。13最后,在材料科学和胶体框架中为艺术保存而设计的创新绿色解决方案,例如凝胶,lms,泡沫,泡沫,乳液,颗粒和复合材料,可用于其他
1 Colins Collins,CORINS,CO CORCORADO州立大学卫生与运动科学系2哥伦比恩卫生系统健康老化中心,科罗拉多州立大学,科罗拉多州柯林斯堡,CO 3环境与放射健康科学系,科罗拉多州立大学,科罗拉多州立大学,柯林斯堡,CO
DNA双链断裂(DSB),以确保基因组稳定性。至关重要的是,必须将DSB末端保持在一起才能及时修复。在酿酒酵母中,两种知之甚少的途径介导了DSB的终端。使用MRE11-RAD50-XRS2(MRX)复合物在物理上桥接DSB末端。另一个要求DSB通过EXO1转换为单链DNA(ssDNA),但桥接蛋白是未知的。我们发现该粘着蛋白,其加载器和SMC5/6用EXO1作用于Tether DSB末端。非常明显的是,寡聚中特异性受损的粘着蛋白未能束缚DSB,从而揭示了粘着蛋白寡聚的新功能。除了姐妹染色单体内聚力的已知重要性外,基于显微镜的微流体实验通过确保DSB终端连接来揭示凝聚蛋白在修复中的新作用。总的来说,我们的发现表明,粘着蛋白的低聚可防止DSB的末端分离并促进DSB修复,从而揭示了粘连在保护基因组完整性中的新型作用和作用。