在行为实验动物中对神经元活性的操纵对于阐明脑功能的神经元网络至关重要。光遗传学1和化学遗传学2方法对于确定遗传定义的神经元种群对电路和行为输出的贡献仍然非常有价值。两种方法都具有明显的优势,并在精确的时间尺度上对神经元亚群的活性进行了光遗传控制,并且对整个神经元群体活性的化学遗传控制较慢。以前的工作已经开发了一种工具集,该工具集通过将光发射荧光素酶融合到光遗传学的光响应元件中,从而积分光学和化学遗传学方法,从而产生发光的Opsin或Luminopsin(LMO)(LMO)3 - 5 [图。1(a)]。通过荧光素酶氧化可扩散的荧光素底物产生的生物发光会激活附近的蛋白蛋白。取决于OPSIN的生物物质特性,荧光素酶产生的光可以激发或抑制表达LMO的靶神经元。将光学和化学方法的这种整合允许在同一实验动物中同一神经元的一系列空间和时间尺度上操纵神经活动。例如,可以将整个神经元群体激活的行为成分的贡献与同一神经元子集的群体进行比较,从而通过生物发光或光遗传纤维通过光纤维在化学上激活OPSIN化学。6
传统上,视网膜的主要功能被认为是捕获有意识的视觉信息。然而,很明显,眼睛在调节各种生理和行为过程中起着更广泛的作用,包括昼夜节律,睡眠和情绪。MRGC是视网膜神经节细胞的一部分,可独特地适应于非形象形成的大脑区域的光信息。本文探讨了MRGC参与促进大脑发育及其在理解和解决神经系统和神经精神疾病方面的潜在意义。在发育过程中,表达黑色素蛋白的内在光敏性视网膜神经节细胞(IPRGC)比杆和锥体早得多。IPRGCS项目针对许多下皮层区域,而这些预测的生理功能尚未完全阐明。在这里,我们发现IPRGC介导的光感觉促进了各种皮质和海马中锥体神经元的突触发生。这种现象取决于IPRGC的激活,并通过从上核(SON)和旁脑核核(PVN)释放到脑脊髓液[1]来介导催产素[1]。
视紫红质基因 RHO 的突变是常染色体显性视网膜色素变性 (adRP) 的很大一部分原因。患者在临床上分为两类:一类是早发性全视网膜光感受器变性,另一类是病情缓慢进展的患者。后一类患者适合接受光感受器定向基因治疗,而前一类患者则适合将光反应蛋白递送至中间神经元或视网膜神经节细胞。RHO adRP 的基因治疗可能针对 DNA 或 RNA 水平的突变基因,而其他疗法则保留光感受器的活力而不解决潜在的突变。在动物模型中,纠正 RHO 基因和替换突变 RNA 显示出良好的前景,而维持可行的光感受器有可能延缓中央视力的丧失,并可能保留光感受器以进行基因定向治疗。
知识生产的政治是复杂的,多维的,并且经常有争议(Nowotny等,2003)。这不是一个新现象。研究人员已经探索了多年来知识生产的认识论条件(影响研究的过程和产物)(Hall and Tandon,2017; Facer and Pahl,2017; Rasool,2017; Rasool,2017; Rasool,2017; Tandon and Hall,2014; Nowotny et al。,2003,2001,2001; Gibbons et al。,1994年)。在本文中,我们以案例研究的形式探讨了这些不断变化的认识论条件的例子,该案例研究解决了全球南方的巨大健康问题:疟疾。In so doing, we combine ideas drawn from philosophy (‘epistemic injustice'; Fricker, 2007), critical theory (‘epistemicide'; de Sousa Santos, 2007, 2018) and practical approaches (‘engaged research design'; Holliman et al., 2017) with Indigenous knowledge to promote ‘fairness in knowing' (Medvecky, 2018).