光与单个粒子相互作用会产生特定的散射图案。与基于单个光电二极管检测的传统光学 PM 传感器不同,我们测量附近图像传感器上散射特征的无透镜投影(投影距离为 1.5 毫米)。这使我们能够计数粒子并确定其大小和折射率。这些参数是通过图像处理并与计算 Lorenz-Mie 散射图案投影的辐射测量模型进行比较来检索的。我们描述了传感技术、该传感器的架构和制造以及特性结果,这些结果与我们基于理论的预测非常吻合。特别是,我们表明可以区分不同尺寸的校准颗粒(单分散聚苯乙烯乳胶球)。该传感器足够灵敏,可以检测到单个粒子,并且最小尺寸小于 1µm。
基于Znmgo薄膜的光学微孔谐振器(MRR)在从紫外线到近红外的波长范围内的激光频率转换和电气调制的新型光子设备展开了独特的潜力。在这项工作中,我们探讨了通过光子damascene工艺制备的Znmgo光学MRR的耦合系数(κ)对环的间隙(g)和radius(r)的依赖性。通过调整G和R值,可以实现从0.29到0.78的κ范围。模拟和实验结果都表明,κ随着g或/和增加R.的增加而增加。此外,κ对MRR的结合态和共振峰深度具有显着影响。这些发现将Znmgo光学MRR铺平了在Si上的各种紧凑的非线性光子设备上。
的手性和混乱都根植于对称性的破裂中,在基本和应用物理学中一直很有趣。尽管他们共同基础,但这两个基本概念在很大程度上是独立发展的,在交叉路口留下了未开发的潜力。在这里,我们报告了混乱诱导的光学手性,并在量子微叠剂中建立了这些基本现象之间的第一个直接联系。我们揭示了混乱的光动力学打破了时间反转对称性,从而在反推销腔模式之间产生了局部不平衡的强度。通过将手性变压器整合到微腔中,这种局部不平衡被转化为全球性手性,从而产生高度方向的娱乐内激光场,并具有测量的counterpropagation功率比超过10 dB。值得注意的是,这种混乱引起的手性表现出极大的鲁棒性,可以使变压器位置和跨不同空腔边界形状之间的变化具有多种变化,超过了传统方法的多功能性,从而为创新的手势光电设备,单向量子网络和超越。
在这项研究中,我们开发了一个基于单光光学陷阱的表面增强拉曼散射(SERS)光氟分子指纹光谱检测系统。该系统利用单光束光学陷阱在光氟芯片中浓缩游离银纳米颗粒(AGNP),从而显着提高了SERS性能。我们使用COMSOL模拟软件研究了锥形纤维内的光场分布特性,并建立了MATLAB模拟模型,以验证单光束光学陷阱在捕获AGNP方面的有效性,证明了我们方法的理论可行性。为了验证系统的粒子捕获功效,我们通过实验控制了光学陷阱的On-Own状态,以管理颗粒的捕获和释放。实验结果表明,捕获状态中的拉曼信号强度明显高于非捕获状态,这证实了单光束光学陷阱有效地增强了光氟硅烷检测系统的SERS检测能力。此外,我们采用了拉曼映射技术来研究捕获区域对SERS效应的影响,表明激光捕获区域中分子指纹的光谱强度得到了显着改善。我们以10 -9 mol/l的浓度和农药Thiram的浓度成功地检测到了晶体紫罗兰色的拉曼光谱,并在10 -5 mol/L的浓度下进一步证明了单光束光学TRAP在增强分子手指纹状体识别能力的能力的能力。作为集成光电传感系统的关键组成部分,在本研究中开发的光捕获仪具有与便携式高功率激光器和高性能拉曼光谱仪的集成潜力。这种集成有望推进高度集成的技术,并显着提高光电传感系统的整体性能和可移植性。
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
增加可再生能源在电力系统中的份额是成功实现能源转型的关键。最佳可再生能源选址需要采取整体方法,涉及土地、资源、环境和经济数据以及约束。在本文中,我们将太阳能光伏发电渗透到电网的问题视为时空分析,并结合针对政策制定者和投资者的决策支持。我们的目标是寻找新的模型,以最大限度地提高能源渗透和网络稳定性,同时最大限度地降低运营成本。我们展示了如何通过研究围绕共享变电站的多个太阳能光伏园区的最佳聚类来选择太阳能光伏站点以满足这些目标。这是一个组合问题,涉及给定一组光伏站点候选的所有潜在集群。我们的主要贡献在于确定并提出我们的问题与光纤网络设计中解决的所谓 SONET 问题的建模类比。我们展示了这种新的时空光伏园区布局模型如何最大限度地降低运营成本,同时提高所产生的解决方案的能量稳定性。我们还引入了 GIS 预处理步骤来降低所提方法的计算成本。我们根据真实案例研究和法属圭亚那电力系统的数据,将我们提出的基于 SONET 的模型与现有的 GIS 优化模型进行了比较。这种新方法将多个光伏园区聚合成分布在整个领土的集群。以法属圭亚那为例,相同的全球标称功率(≈45 MW)可以分布在 11 个光伏园区和 3 个集群中,而不是 3 个大型光伏园区。结果显示,当考虑到 ⩽ 5 MW 的光伏园区时,每千瓦时发电成本大幅提升,最多可增加 10 MW 的额外安装功率和 16 GWh 的额外发电量。新的集群配置还可确保解决方案的能量稳定性得到提高,从而降低网络管理员和决策者的风险。
我们提出了一种新方法,通过操纵三维(3D)物质波孤子(MWS)的深度和中心来实现不同光学势阱之间的变换。通过平方算子法获得3D MWS,并通过使用分步傅里叶方法进行时间演化将其转换为其他类型(椭圆形/环形/项链形)。通过将变换后的孤子与使用平方算子法迭代获得的孤子进行比较,证明了我们方法的有效性和可靠性。由于电位的调制,可以观察到MWS的重新分布。在某些复杂的光学势阱中,我们展示了通过这种转换方法产生奇异的MWS,例如双回转模式。总体而言,可控孤子变换为全光切换、光信息处理和各种其他应用提供了绝佳的机会。
四元铜银铋碘化合物代表了一类有前途的新型宽带隙 (2 eV) 半导体,可用于光伏和光电探测器应用。本研究利用气相共蒸发法制造 Cu 2 AgBiI 6 薄膜和光伏器件。研究结果表明,气相沉积薄膜的性质高度依赖于加工温度,表现出针孔密度增加,并根据沉积后退火温度转变为四元、二元和金属相的混合物。这种相变伴随着光致发光 (PL) 强度和载流子寿命的增强,以及在高能量 (≈ 3 eV) 下出现额外的吸收峰。通常,PL 增加是太阳能吸收材料的理想特性,但 PL 的这种变化归因于 CuI 杂质域的形成,其缺陷介导的光学跃迁决定了薄膜的发射特性。通过光泵太赫兹探测光谱法,揭示了 CuI 杂质阻碍了 Cu 2 AgBiI 6 薄膜中的载流子传输。还揭示了 Cu 2 AgBiI 6 材料的主要性能限制是电子扩散长度短。总体而言,这些发现为解决铜银铋碘化物材料中的关键问题铺平了道路,并指明了开发环境兼容的宽带隙半导体的策略。
彩色光学中心是晶格中的功能缺陷,在原本透明的钻石中吸收并发出光。它们具有有趣的物理特性,具有各种可能的应用,从量子通信到生物医学。这项工作旨在研究与SI-V中心相关的光电压的产生,以在与有机分子相互作用中使用。作品的部分任务是:1)熟悉有关材料和方法的推荐和对文献的熟悉。准备自己的重点概述,概述当前的艺术状态。2)设计合适的设置,并在SIV中心对纳米晶钻石薄层的SIV中心上的工作函数和光伏作为激发波长的函数。3)对具有不同厚度,不同表面修饰(氢,氧)的样品进行测量,作为时间和照明的功能。使用可调激光器来照亮样品并对波长400-800 nm进行测量。4)评估和比较各种样本系列的工作函数和光电压趋势。