100029,中国 2 中国科学院大学地球科学学院,北京,中国 3 中国科学院上海微小卫星工程中心,上海,中国 4 苏州大学电子信息工程学院
该出版物可以是以下几个版本之一:作者原件、已接受的手稿或出版商的版本。 / 本出版物的版本可能是以下版本之一:作者的出版前版本、手稿的接受版本或出版商的版本。如需获取出版商版本,请访问下面的 DOI 链接。/ 如需查看出版商版本,请使用下面的 DOI 链接。
摘要:我们预测磁性铬基过渡金属二硫属化物 (TMD) 单层在其 Janus 形式 CrXTe(其中 X = S、Se)中具有非常大的自旋轨道扭矩 (SOT) 能力。Janus 结构固有的结构反演对称性破坏导致巨型 Rashba 分裂产生较大的 SOT 响应,相当于在非 Janus CrTe 2 中施加 ∼ 100 V nm −1 的横向电场所获得的响应,这完全超出了实验范围。通过对精心推导的 Wannier 紧束缚模型进行传输模拟,发现 Janus 系统表现出与最有效的二维材料相当的 SOT 性能,同时由于其平面内对称性降低,还允许无场垂直磁化切换。总之,我们的研究结果表明,磁性 Janus TMD 是超紧凑自感应 SOT 方案中终极 SOT-MRAM 设备的合适候选者。关键词:自旋轨道扭矩、过渡金属二硫属化物、二维材料、范德华铁磁体
Wong,G。D. H.,Xu,Z.,Gan,W.,Ang,C.C.I.,Law,W.C.,Tang,J.,Zhang,W.,Wong,P.K.J.,P.K.J.,Yu,X. 在柔性底物上PT/CO中的应变介导的自旋轨道扭矩增强。 ACS Nano,15(5),8319-8327。 https://dx.doi.org/10.1021/acsnano.0c09404Wong,G。D. H.,Xu,Z.,Gan,W.,Ang,C.C.I.,Law,W.C.,Tang,J.,Zhang,W.,Wong,P.K.J.,P.K.J.,Yu,X.在柔性底物上PT/CO中的应变介导的自旋轨道扭矩增强。ACS Nano,15(5),8319-8327。https://dx.doi.org/10.1021/acsnano.0c09404
已成功地用于有效操纵磁化,从而导致了最近的商业STT磁性记忆解决方案。[1]自旋 - 轨道扭矩(SOT),该扭矩(SOT)使用高自旋霍尔效应(SHA)材料中的平面电荷电流产生的平面自旋电流,可以实现对磁磁性的更节能的操纵,并且正在达到商业兼容。[2–4]到目前为止,已经研究了各种高自旋 - 轨道耦合(SOC)材料,包括重金属,拓扑绝缘子(TIS),[5-7]以及最近的拓扑半学(TSMS),[8-11],[8-11] J S | / | J C | ,将其在转换电荷电流密度j c转换为旋转电流密度j s的效率的度量。此外,还研究了高HIM和FM材料层之间的界面工程,以最大程度地跨越界面,以最大化自旋透射式T int。[12–19]有效SOT Spintronic设备的主要挑战是最大化SOT效率,ξ=θSh·t int。[20]
在相同时期重叠的预测性和确定的状态,以确定24、48和72小时的预测错误,我们表明JB2008在地磁风暴期间略优于MSIS模型,在某些孤立情况下将预测错误减少了一半。然而,在风暴周期之外,从我们的样本数据中产生的经验径向 - 中轨道 - 越野轨道的不确定性小于Jacchia-Bowman的同等结果:在400公里处,误差差异差异小于20%,但在700 km时,误差双倍。我们还表明,对于此应用,较新的NRLMSIS 2.0和经典NRLMSISE-00之间的差异可以忽略不计;较低的热圈密度会导致较高的C D估计值,但预测误差基本相同。
在日益拥挤的空间领域,准确及时地确定新物体或机动物体的轨道参数变得至关重要。目前,任何传统的仅基于角度的初始轨道确定 (IOD) 算法都需要至少三次光学观测(每次提供两个独立的角度测量),且时间上相隔很远,才能表现良好。在本文中,我们描述了一种新的传感器加算法工程方法,即 AURORAS(高级单传感器快速轨道重建算法和传感)(正在申请专利),它将大大提高 IOD 的速度和准确性。我们通过同时测量(而不是估计)物体在某一时间点的角位置、角速度和角加速度,获得了定义轨道所需的最少六个独立参数,比目前的传统方法快得多。然后,我们继续描述光学传感器技术的革命以及实现这种方法的算法。我们还将 AURORAS 功能的性能与传统的 IOD 方法进行了比较,发现 AURORAS 在准确性和及时性方面比传统方法高出一个数量级或更多。我们还介绍了一种候选传感器的实际性能以及一种支持 AURORAS 方法的新型未来传感器设计(正在申请专利)。由于 AURORAS 具有差分特性(与许多传统路径积分 IOD 方法不同),因此它很容易应用于任何轨道区域,只要在特定时间点,重力势能可以沿观察者的视线指定。这包括地月环境。
2022年2月4日,由于预测的太空天气指数中的错误估计以及以下大气阻力的意外增加,SpaceX损失了其49个Starlink卫星中的40个。通过进一步调查该事件,发现地磁风暴只是次要风暴。尽管如此,两次连续的冠状质量弹出在2月3日至4日袭击了地球,与2月2日相比,热圈密度的平均增加约为20%,局部峰值高达60%。这一事件以及我们正在预期太阳能活动时正在接近第25太阳能周期的太阳能最大值,这表明需要准确的预测,建模和对太阳对热层密度的影响的理解(Dang等,2022)。实际上,大气阻力是低于1,000公里的空间对象的主要干扰力,也是最大的不确定性来源(Berger等,2020)。因此,其确切的估计对于
总结模块化机器人系统的使用在轨道机器人技术中起关键作用。在这里,可以将具有不同有效载荷的不同模块相互结合,例如创建卫星。连接模块,所谓的标准互连(SIS)具有多功能特征,例如允许机械和电气连接以及数据传输,并且在必要时也需要调节热分布。在欧盟Horizon 2020项目Peraspera项目的运营赠款(OG)期间,将在基准测试概念的帮助下评估三个SIS,以对最适合的轨道示范任务提出建议。本演讲将在时期,涉及的SIS和基准测试概念的结构中突出计划的演示场景。关键字:空间机器人,标准互连,轨道示范,
已成功用于有效操控磁化,从而产生了最近的基于 STT 的商业化磁存储器解决方案。 [1] 自旋轨道扭矩 (SOT) 利用高自旋霍尔效应 (SHE) 材料中的平面电荷电流产生的平面外自旋电流,可以实现更节能的磁化操控,并且正在达到商业成熟度。 [2–4] 到目前为止,已经研究了各种高自旋轨道耦合 (SOC) 材料,包括重金属、拓扑绝缘体 (TI) [5–7] 以及最近的拓扑半金属 (TSM) [8–11],以最大化它们的自旋霍尔角 θ SH = | J s | / | J c |,这是它们将电荷电流密度 J c 转换为自旋电流密度 J s 的效率的量度。此外,已经研究了高 SHE 和 FM 材料层之间的界面工程,以最大化跨界面的自旋透明度 T int。 [12–19] 高效 SOT 自旋电子器件的关键挑战是最大化 SOT 效率,ξ= θ SH · T int。[20]