mTORC1 和 AMPK 是相互拮抗的营养和能量状态传感器,与许多人类疾病有关,包括癌症、阿尔茨海默病、肥胖症和 2 型糖尿病。社会性变形虫 Dictyostelium discoideum 的饥饿细胞会聚集并最终形成由柄细胞和孢子组成的子实体。我们关注如何实现细胞命运的这种分歧。在生长过程中,mTORC1 高度活跃,而 AMPK 相对不活跃。饥饿时,AMPK 被激活而 mTORC1 被抑制;细胞分裂被阻止并诱导自噬。聚集后,少数细胞(前柄细胞)继续表达与聚集期间相同的发育基因集,但大多数细胞(前孢子细胞)切换到前孢子程序。我们描述了表明过表达 AMPK 会增加前柄细胞比例的证据,抑制 mTORC1 也会增加前柄细胞的比例。此外,刺激细胞内酸性区室的酸化同样会增加前柄细胞的比例,而抑制酸化则有利于孢子途径。我们得出结论,细胞分化的前柄途径和前孢子途径之间的选择可能取决于 AMPK 和 mTORC1 活性的相对强度,这些活性可能受细胞内酸性区室/溶酶体 (pHv) 的酸度控制,pHv 低的细胞具有高 AMPK 活性/低 mTORC1 活性,pHv 高的细胞具有高 mTORC1/低 AMPK 活性。深入了解这种转换的调节和下游后果应该会提高我们对其在人类疾病中潜在作用的理解,并指出可能的治疗干预措施。
摘要 电磁波和标量波现象对转基因生物 (GMO) 的影响是物理学、生物学和新兴技术的一个迷人交汇点。本文探讨了波与生物系统相互作用的理论和数学基础,重点研究了横电磁波 (TEM)、赫兹波和假设的标量波的潜在影响。DNA 具有复杂的螺旋结构和电磁特性,可充当能够与这些波产生共振的纳米级天线。通过麦克斯韦方程和量子力学建模的能量转移揭示了改变基因表达、诱导表观遗传变化和破坏细胞生物电场的合理机制。在非线性效应(例如谐波产生和介电加热)对转基因生物稳定性、性状表达和细胞功能的影响的背景下进行了分析。虽然 TEM 和赫兹波与生物系统的相互作用有据可查,但标量波仍是推测性的,需要进一步的实验和理论研究。本文结合基础物理学和生物物理学,阐明了这些能量场如何影响转基因生物,并强调了其在农业、医学和生物技术领域的潜在应用和风险。
开放的科学数据存储库(OSDR)使从实验和任务中访问与空间相关的数据,这些数据研究了陆地对太空飞行的生物学反应。
4- 6 , Mark S Gold 7 , Eliot L Gardner 8 , Igor Elman 1,9 , Merlene Oscar Berman 10 , Jean Lud Cadet 11 , Alireza Sharafshah 12 , Catherine A Dennen 13 , Abdalla Bowirrat 1 , Albert Pinhasov 1 , David Baron , Marrie Gondre , 13 , Marrie Lewis 15 , Rajendra D Badgaiyan 16 , Jag Khalsa 17 , Keerthy Sunder 18,19 , Kevin T Murphy 20 , Milan T Makale 21 , Edward J Modestino 22 , Nicole Jafari 23,24 , Foojan Zeine 25 , 26 , Alexander Mander 27 3 , Brian S Fuehrlein 28 和 Panayotis K Thanos 1,29
我们确定了四个在鹌鹑研究人群中表现出等位基因多样性的鹌鹑特异性微卫星引物,从而使我们能够与研究殖民地区分两个男性和两个雌性鹌鹑。允许一名男性与雌性交配,并收集卵进行PVM去除和GDNA分离,然后进行微卫星PCR扩增。我们以足够高的浓度成功地分离了GDNA(5-10 ng/ µl,250-500 ng),以达到每个卵的微卫星剖面。所有卵都表现出微卫星扩增,使我们可以为每个鸡蛋建立一个DNA谱。但是,由于过多的普通等位基因,只有一个微卫星能够通过将两个雌性排除在三分之一的卵中,并在所有卵中排除了非繁殖雄性。
Causal organism, Symptoms, Etiology and Control Measures of Following Diseases: Leaf Curl OF Papaya, Bunchy Top of Banana, CitrusCanker, Angular Leaf spot of Cotton, Downy Mildew of Bajra, Grain Smut of Sorghum, Stem Rust of Wheat, Tikka Disease of Groundnut, Wilt of Pigeon Pea, Red Rot of Sugarcane, Sandal Spike disease of Mycoplasma.
genetic systems. The components of a host-orthogonal genetic system include but are not limited to orthogonal DNA polymerase, orthogonal RNA polymerase, orthogonal aminoacyl tRNA synthetases, orthogonal transcription factors, and unnatural amino acids. Constructing a host-orthogonal genetic system is of great significance to the devel- opment of synthetic biology. Similar to a computer program, the genetic system needs to be modified and rewritten to meet different needs in synthetic biology. [2] However, the native genetic system is rigid and complex, [1] which brings challenges to genetic engineering for a fine-tuned con- trol of the genetic system. First, the heterogeneous elements and devices are often incompatible with or interfere with native biological systems. This is like a computer program that is suit- able for one operating system cannot be read in another oper- ating system. It is common for a genetic element which func- tions well in its host organism fails to work in another organism that is more suitable for large-scale industrial applications. [3–4] Second, massive modifications of the native genetic system may lead to the death of the host organism. For example, large phenotypic changes are often inaccessible in the host organism because the substantial genetic changes could harm the expres- sion of host genes. [4–5] To address these limitations, researchers set out to construct host-orthogonal genetic systems. Just like a virtual machine, the orthogonal genetic system separates from the large and unwieldy host operating systems, and shows operational flexibility and minimal impact on the host biolog- ical system. In this review, we will describe the design and con- struction of host-orthogonal genetic systems, highlight some of their applications in the synthetic biology field, and discuss the associated challenges and opportunities.
• New definitions are determined - "Endocrine disruptor": substance or a mixture that changes one or more function (s) of the hormone system and consequently triggered harmful effects in an intact organism, its offspring, populations or partial populations - "endocrine disruption", "endocrine activity" - "harmful effect": change in生物体,系统,系统,人群或部分人的形态,生理,生长,发育,生长,生殖或生命,功能限制,限制应对压力增加或对其他影响的易感性增加的能力 - “生物学上可比性的联系”:基于内分泌活动和有害效应之间的相关性生物过程• New definitions are determined - "Endocrine disruptor": substance or a mixture that changes one or more function (s) of the hormone system and consequently triggered harmful effects in an intact organism, its offspring, populations or partial populations - "endocrine disruption", "endocrine activity" - "harmful effect": change in生物体,系统,系统,人群或部分人的形态,生理,生长,发育,生长,生殖或生命,功能限制,限制应对压力增加或对其他影响的易感性增加的能力 - “生物学上可比性的联系”:基于内分泌活动和有害效应之间的相关性生物过程
农业处理器:从事畜牧业的公司或农业持有,并喂食含有单一或化合物的大豆(例如农场,饲养母鸡,脂肪家禽,肥猪,牛牛或奶牛。)non-GM: Non-genetical Modified GM: Genetic Modified GMO: Genetic Modified Organism Codex: Guideline on the Definition of "Gmo-Free Production" of Food and Its Labeling (Directive "GESTHOCHTORICK-Free Production" of Food) The Austrian Food Codex (Codex Alimentarius Austriacus) 1 in Combination with it Guideline on the Risk- Based Monitoring of GMO-Free Production (Guide to Risk-based Checking免费)2 vlog:德国“无基因工程的食物”(vlog,www.ohnegentechnik.org)非GM多瑙河区域标准3non-GM: Non-genetical Modified GM: Genetic Modified GMO: Genetic Modified Organism Codex: Guideline on the Definition of "Gmo-Free Production" of Food and Its Labeling (Directive "GESTHOCHTORICK-Free Production" of Food) The Austrian Food Codex (Codex Alimentarius Austriacus) 1 in Combination with it Guideline on the Risk- Based Monitoring of GMO-Free Production (Guide to Risk-based Checking免费)2 vlog:德国“无基因工程的食物”(vlog,www.ohnegentechnik.org)非GM多瑙河区域标准3