心脏和内胚层联盟:多层类器官1 2 Wai Hoe ng†,1,芭比娃娃瓦尔格斯†,1,Hongpeng Jia 2,XI Ren‡,1 3 4 1生物医学工程系,Carnegie Mellon University,Carnegie Mellon University,Carnegie Mellon University,Pittsburgh,Pittsburgh,Pennsylvania。6 2美国马里兰州巴尔的摩市约翰·霍普金斯大学医学院外科部。8†等于贡献9‡信函10 11信函的作者:12 Xi Ren,博士学位。 13 Carnegie Mellon University, Scott Hall 4N111 14 5000 Forbes Avenue, Pittsburgh, PA 15213 15 Telephone: 1-412-268-7485 16 Email: xiren@cmu.edu 17 18 19 Abstract 20 Studies in animal models tracing organogenesis of the mesoderm-derived heart have emphasized 21 the importance of signals coming from adjacent endodermal tissues in coordinating适当的心脏22形态发生。尽管在体外模型(例如心脏器官)表现出巨大的潜力23来概括人心的生理学,但它们无法捕获共同发育的心脏和内胚层器官之间发生的复杂的24个串扰,部分原因是25是由于其独特的生殖层起源。为了解决这一长期挑战的努力,最近的报告26包括心脏和内胚层衍生物既有多核心器官,已经激发了27努力,以了解跨器官,跨分节沟通如何影响其28个各自的形态发生。这些共差异系统已经产生了29个共享信号传导要求的有趣发现,以诱导心脏规范以及原始的前肢,30个肺部或肠谱系。总体而言,这些多素心脏器官为人类发展提供了31个前所未有的窗口,可以揭示内胚层和心脏32如何配合直接形态发生,模式和成熟。此外,通过时空33重组,共同出现的多曲细胞细胞自组装成不同的隔室,如心脏前肠,心脏 - 智能和心脏 - 肺类器官34所示,并经历细胞35细胞35迁移和组织重新组织,以建立组织Bundaries。探讨未来,这36个心脏融合的多素质器官将激发改进细胞37再生干预措施采购的未来策略,并为疾病38调查和药物测试提供更有效的模型。在这篇综述中,我们将介绍39个协调心脏和内胚层形态发生的发育环境,讨论40个心脏和内胚层衍生物的体外共同诱导的策略,并最终评论这一突破启用的挑战和令人兴奋的新的41个研究方向。42 43 44 Non-standard Abbreviations and Acronyms 45 Shh – Sonic hedgehog 46 Wnt2 – Wingless-type MMTV integration site family, member 2 47 Wnt2b – Wingless-type MMTV integration site family, member 2b 48 Tbx5 – T-box transcription factor 5 49 hPSC – Human pluripotent stem cell 50 hiPSC – Human induced多能干细胞51
摘要我们当前关于人脑发展的知识主要源自关于非人类灵长类动物,绵羊和啮齿动物的实验研究。但是,由于物种差异和产后和产后脑成熟的变化,这些研究可能无法完全模拟人脑发育的所有特征。因此,补充体内动物模型以增加临床前研究与潜在的未来人类试验具有适当相关性的可能性是重要的。三维脑器官培养技术可以补充体内动物研究,以增强临床前动物研究的转换性和对脑相关疾病的理解。在这篇综述中,我们着重于使用人脑器官的低氧缺血(HI)脑损伤模型的发展,以补充从动物实验到人类病理生理学的翻译。我们还讨论了这些工具的开发如何提供潜在的机会来研究与HI相关脑损伤的病理生理学的基本方面,包括男性和女性之间的反应差异。
类器官是从模仿特定器官的组织和功能的干细胞中得出的三维结构,使其成为研究生物学中复杂系统的宝贵工具。本文探讨了复杂系统理论在理解和将器官表征为复杂的生物系统典范中的应用。通过识别和分析在各种自然,技术和社会复杂系统中观察到的共同设计原理,我们可以深入了解控制器官行为和功能的基本机制。本综述概述了复杂系统中发现的一般设计原理,并演示了这些原理如何在器官中表现出来。通过将类器官视为复杂系统的表示,我们可以阐明我们对它们正常生理行为的理解,并获得对可能导致疾病的改变的宝贵见解。因此,将复杂的系统理论纳入器官的研究可能会促进生物学的新观点,并为新的研究和治疗干预措施铺平道路,以改善人类健康和福祉。
8大多数药物是针对其他癌症类型的批准的(例如乳腺癌)的靶向治疗方法,但在这里为患有不同类型的癌症患者(例如胰腺癌)的患者提供了“非标签”,因为分子分析和药物筛查表明潜在的匹配和益处。9要包含在实验治疗方案中,患者必须具有i)耗尽的治疗选择(或预计不久将耗尽标准治疗方案),ii)表现状态为0-1,iii)至少3个月的预期寿命,iv)正常器官功能,v)可测量的疾病,vi)可用于活检的转移性组织。10最初,目的还应在小鼠体内(或PDX)内部肿瘤,以便进行体内药物验证。由于遇到实际困难,该项目的这一部分被搁置了,我们在这里主要关注器官的使用。
免疫疗法作为对抗癌症的治疗策略表现出了巨大的成功。但是,它们的功效仅限于一部分患者。治疗失败可以归因于缺乏反应的预测性生物标志物,以及当前临床前模型的有限转换性,这些模型未能概括人类肿瘤与免疫系统之间的相互作用,很容易失去肿瘤特异性抗原,并且/或在大型研究中是次优的。
复杂的三维体外器官模型或器官提供了一种独特的生物学工具,其优势比二维细胞培养系统具有明显的优势,这可能过于简单,动物模型可能太复杂,可能无法概括人类的生理学和病理学。在驱动干细胞分化为不同的器官类型方面取得了重大进展,尽管仍然存在一些挑战。例如,许多类器官模型都具有高的异质性,并且很难完全融合体内组织和器官发育的复杂性,以忠实地再现人类生物学。成功解决此类局限性将增加器官的生存力作为药物开发和临床前测试的模型。在2022年4月3日至6日,在Keystone研讨会上召集了“器官开发和生物学专家”,“器官作为基本发现和翻译的工具”,讨论了这种相对较新的模型系统对人类发展和疾病的最新进步和见解。
肾脏疾病是一场全球性的健康危机,影响着全球超过 8.5 亿人。在美国,每年用于肾脏疾病和器官衰竭的医疗保险支出超过 810 亿美元。由于对人类肾脏疾病发病和进展的分子机制了解不足,开发靶向疗法的努力受到限制。此外,90% 的候选药物在人体临床试验中失败,通常是由于动物模型无法准确预测毒性和疗效。体外肾脏模型的出现,例如由诱导多能干细胞 (iPS) 和器官芯片 (器官芯片) 系统设计的模型,因其能够更准确地模拟组织发育和患者特异性反应以及药物毒性而引起了人们的极大兴趣。本综述介绍了利用 iPS 细胞生物学模拟人类特异性肾脏功能和疾病状态来开发肾脏类器官和器官芯片的最新进展。我们还讨论了必须克服的挑战,以实现类器官和器官芯片作为人类肾脏的动态和功能性导管的潜力。实现这些技术进步可能会彻底改变个性化医疗应用和肾脏疾病的治疗发现。
知情同意是任何涉及人类受试者的研究的基本先决条件,包括在医疗服务中收集的组织/细胞的工作以及相关的数据,并进一步用于研究。类器官是2000年代初出现的生物技术产物,基于数十年来研究人类细胞增殖和更新自己,甚至在体内的潜力。类器官是由健康或病理起源的各种类型的天然或工程干细胞制成的一个家族,就其细胞组成和/或类似的结构而言,它们与器官具有相似之处,它们至少重现了器官的某些功能和功能。类器官研究。知情同意书是一个包括口头和书面信息的过程,以及证明完成信息过程的形式的签名,并且捐赠者已自由同意使用其细胞或组织。仅提供信息是不够的:此信息需要足够清晰才能被每个捐赠者理解,并且该过程也必须简单易懂。这意味着研究人员必须使捐助者能够做出自主和自愿的决定,而无需任何类型的激励措施,并且如果适用,则不会对其医疗后续行动产生任何影响。用于器官研究,这意味着提供有关哪种器官的信息,以及哪个工程程度和应用。知情同意书意味着将研究的最初目的告知捐助者,但也涉及其捐赠的进步/进化。也意味着有关二次使用的可能存储的透明信息,重定向初始研究项目,以实现另一个目的,可能转移到外国,其生物材料和相关数据的未来以及研究团队的身份以及捐助者的权利,并有权行使其独立权利或拒绝参与任何时间。这引发了有关细胞或组织未来未来使用的问题。s ome类器官可能会引起比其他人更多的问题,并且必须充分解释潜在戒断的条件。我们已经确定了复杂的神经组织器官和胚胎模型是可能引发捐助者道德问题的派生的例子。
玛丽·雪莱(Mary Shelley)在1818年写了弗兰肯斯坦(Frankenstein)。欧洲的启蒙运动正在如火如荼地进行,但是科学革命只是出现了。Luigi Galvani(1737–1798)最近证明了电力对解剖动物的作用,而他的侄子Giovanni Aldini(1762-1834)用电力“动画”了人类尸体。在考虑伦理学之前,采用了这种技术,但是公平地说,生物伦理学的纪律不会再过一个半世纪。归雪莱这样的作家创造了叙事,可以通过科学进步的道德含义来帮助社会思考。自玛丽·雪莱(Mary Shelley)出发写她的哥特式恐怖故事以来,世界发生了很大变化。以微妙而深刻的方式操纵生活已经有可能。我们现在有生物伦理学,但是科学进步定期超过我们思考的能力。没有比当前神经生物学研究更清晰的地方。
每种药物的耐药细胞系(红色标记)将接受化学探针库处理,以识别化疗增敏剂。在 384 孔板中,类器官细胞将单独接受化合物库处理,或与亚致死剂量的治疗药物联合使用。我们将识别仅在联合使用时才显示毒性的化学探针(图 1C)。在准备筛选时,确认了 384 孔板中的接种一致性(图 1D)。为了进行质量控制(Z 因子和 Z-Prime 因子),每个筛选板将包含阳性和阴性对照。单一药物和联合使用后的活力数据