采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
蚊子(Culicidae)代表全球主要的媒介昆虫,它们还居住在世界上许多陆地和水生栖息地。DNA条形码和元法编码现在广泛用于涉及蚊子的研究和常规实践中。但是,这些方法依赖于由代表分类学凭证标本的条形码序列组成的数据库中可用的信息。在这项研究中,我们评估了主要在线数据库中蚊子的公共数据的可用性,专门针对Culicidae:COI及其2的两个最广泛使用的DNA条形码标记。此外,我们对影响物种覆盖范围的可能因素(即在线数据库中覆盖的物种的百分比)对不同国家的COI以及COI的DNA条形码间隙的出现进行检验。我们的发现显示了存储库公开可用的数据差异,Bold + GenBank的COI的分类学或物种覆盖率为28.4–30.11%,而GenBank的ITS覆盖率为12.32%。非洲,澳大利亚和东方的生物地理区域的覆盖范围最低,而近乎度,果皮和大洋洲的覆盖范围最高。新热带区域具有中间覆盖范围。通常,蚊子多样性和较高数量的医学重要物种的覆盖率较低。此外,较高数量的特有物种的国家往往具有更高的覆盖范围。我们希望这项研究可以帮助指导蚊子的区域物种清单,并为所有蚊子物种的DNA条形码提供公开可用的参考文献库。尽管我们的DNA条形码间隙分析表明,需要在数据库中可用的一半蚊子中修改物种边界,但必须收集其他数据以确认这些结果并允许解释DNA条形码间隙的发生。
摘要 我们使用飞机调度场景中的尾部分配和精确覆盖问题,对迄今为止最大的量子退火器(5000+ 量子比特量子退火器 Advantage 及其 2000+ 量子比特前身 D-Wave 2000Q)的量子处理单元进行了基准测试。基准测试集包含小型、中型和大型问题,其中既有稀疏连接实例,也有几乎完全连接的实例。我们发现,Advantage 在几乎所有问题上都优于 D-Wave 2000Q,成功率和问题规模都有显著提高。特别是,Advantage 还能够解决 D-Wave 2000Q 无法再解决的具有 120 个逻辑量子比特的最大问题。此外,仍然可以由 D-Wave 2000Q 解决的问题可以通过 Advantage 更快地解决。然而,我们发现,D-Wave 2000Q 可以在不需要 Advantage 上存在的许多新耦合器的情况下解决稀疏连接问题并获得更好的成功率,因此提高量子退火器的连通性本身并不会提高其性能。
a 瑞典皇家理工学院,应用物理系,阿尔巴诺瓦大学中心,斯德哥尔摩,SE-114 21,瑞典 b 中子散射和成像实验室,保罗谢勒研究所,CH-5232,Villigen PSI,瑞士 c 纳米科学中心,尼尔斯玻尔研究所,哥本哈根大学,Nørre All e 59,DK-2100,哥本哈根 O,丹麦 d 都灵理工大学应用科学与技术系,Corso Duca Degli Abruzzi 24 10129,都灵,意大利 e 维也纳科技大学固体物理研究所,Wiedner Hauptstraße 8 e 10,1040,维也纳,奥地利 f 瑞典皇家理工学院 PDC 高性能计算中心,SE-100 44,斯德哥尔摩,瑞典 g Nordita,瑞典皇家理工学院和斯德哥尔摩大学,Hannes Alfv ens v € ag 12,SE-106 91,斯德哥尔摩,瑞典 h 东京大学固体物理研究所中子科学实验室,柏,千叶 277-8581,日本 i 东京大学跨尺度量子科学研究所,东京 113-0033,日本 j 高能加速器研究机构材料结构科学研究所,茨城 305-0801,日本 k 牛津大学无机化学实验室,牛津 OX1 3QR,英国 l 印度理工学院物理系,坎普尔 208016,印度 m 塔塔基础研究所 DCMPMS,孟买 400005,印度 n 查尔姆斯理工大学物理系,SE-412,哥德堡,瑞典
工业生物技术和代谢工程对工业生物技术的影响,微生物发酵用于生产用于农业,家庭护理产品,化妆品以及食品和制药企业的多种化学物质。传统产品包括有机酸(乳酸,柠檬酸盐),抗生素,用作饲料添加剂的氨基酸,用于人类和牲畜的维生素,用于洗涤剂和多种工业过程的酶以及用作生物燃料的乙醇。近年来,还开发了微生物发酵过程来生产用于生产材料的商品化学物质(参见词汇表),以及生产用作食品和化妆品中成分的精细化学物质(Box 1)。这一开发的关键驱动因素是我们能够设计微生物细胞具有量身定制的代谢网络的能力,该网络非常适合生产一种特定产品,通常称为代谢工程[1,2]。在过去的20年中,代谢工程领域取得了巨大的进步[3],文献报告了数百种有关可能在市场上潜在使用的不同化学物质的学术研究。但是,对于这些学术项目,重要的是要扩展流程并确保该过程能够满足某些技术经济目标。在这里,出售商品的成本(COGS)是评估新过程的关键参数,因为如果产品可以在市场上竞争,则可以确定。后者可以大大不同,具体取决于产品。当提出了已经具有已建立市场的化学物质以及制造必须将其定位在市场中的新化学物质时,这将达到这一点。齿轮基本上取决于以下成本因素:(i)原材料成本,(ii)运营成本,(iii)生产设施的贬值,以及(iv)贬值研究和开发成本。例如,由于昂贵的临床试验和注册费,新颖的小麦克糖的开发成本通常高于商品化学品的发展成本。正如我们最近讨论的[4],工程的研发成本在过去的10年中有明显减少,因此,今天它们仅占开发新流程的成本的一小部分。此外,即使扩展新过程可能会昂贵,但这通常会导致生产一些可以出售或用于开发市场的产品,并且在整体
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
拓扑量子材料的独特电子性能,例如受保护的表面状态和外来的准粒子,可以提供带有垂直磁各向异性磁铁的外部无磁场磁力切换所需的平面自旋偏振电流。常规自旋 - 轨道扭矩(SOT)材料仅提供平面自旋偏振电流,而最近探索的具有较低晶体对称性的材料可提供非常低的平面自旋偏振电流组件,不适用于能量固定的SOT应用。在这里,我们使用拓扑WEYL半候选牛头牛Tairte 4具有较低的晶体对称性,在室温下在室温下表现出大型的脱离平面阻尼样SOT。我们基于Tairte 4 /ni 80 Fe 20异质结构进行了自旋 - 扭矩铁磁共振(STFMR)和第二次谐波霍尔测量,并观察到大型平面外阻尼样的SOT效率。估计平面外旋转大厅的构成为(4.05±0.23)×10 4(ℏ⁄ 2 e)(ωm)-1,这比其他材料中报道的值高的数量级。
多磷烯是具有P - - N作为骨骼的无机有机杂化聚合物,以其主链结构和高度活跃的P - Cl键形成的独特物理化学特性而闻名。聚磷酸的各种功能特性使其成为许多领域的有希望的研究前景,包括固体聚合物电解质,阳极材料,隔膜等。本综述讨论了主要的合成途径,各种功能的修改以及模板沉淀自组装poly Merization。其中,模板诱导的降水自组装是多磷酸形成纳米球,纳米片和纳米管的出色策略。固态锂电池是有希望的储能候选者,但是在室温下,常用的PEO电解质的LI +电导率限制为10-6 s·CM -1。具有乙醚氧侧的基于多磷酸的电解质倾向于具有更好的离子电导率,并且阻燃。聚磷酸有机聚合物也是一种有吸引力的碳纤维前体,也是阳极电极的理想选择。在高温碳化后,碳基质上掺杂原位的N,P杂种可以改变碳中立性和赋予带电的位点,从而进一步提高锂储存能力。此外,聚磷酸具有在隔膜和其他电池系统上使用的潜力。
基于小分子受体(SMA)的全PSC。 [1–8] 近年来,随着新型高效PD和聚合小分子受体(PSMA)的快速发展,全PSC的能量转换效率(PCE)已升至16%。 [9–14] 然而,目前报道的PCE超过13%的全PSC仅有少数,仍然远低于最先进的基于SMA的全PSC。更重要的是,它们的机械性能还远远达不到可穿戴设备的要求(即要求裂纹起始应变(COS)至少为20–30%)。阻碍基于PSMA的全PSC性能的主要障碍是强烈相分离的共混物形貌,这是由于高分子量PD和PSMA的分离导致的,从而导致电荷产生和传输无法优化。 [15,16] 这些非最优形态通常包括共混膜中的许多缺陷位点(即尖锐的畴-畴界面和大的聚合物聚集体),限制了低 COS 下的机械强度和拉伸性。[17–19] 此外,聚合物共混物的相分离受 PD 和 PA 的聚集和结晶行为的影响。特别是,含有高度结晶、刚性 SMA 单元的 PSMA 通常具有非常强的结晶和聚集特性,导致强烈的相分离