颞叶癫痫中非典型皮质不对称和萎缩模式的拓扑发散Park, B.-y.;拉里维尔,S.;罗德里格斯-克鲁塞斯,R.;罗耶,J.;塔瓦科尔,S.;王,Y.; Caciagli,L.; Caligiuri,M.E.;甘巴德拉(Gambardella),A.; Concha,L.;凯勒,SS; Cendes,F.;阿尔维姆(MKM);安田,C.; Bonilha,L.; Gleichgerrcht,E.;福克,NK;克雷尔坎普(BAK);洛德,M.; Podewils,F.冯;朗纳,S.;鲁默尔,C.; Rebsamen,M.;威斯特,R.;马丁,P.; Kotikalapudi,R.;本德,B.;奥布莱恩,T.J.;法律,M.;辛克莱,B.; Vivash,L.;关,P.;德斯蒙德,PM;马尔帕斯,CB;他,E.;阿尔胡塞尼,S.;多尔蒂,C.P.卡瓦莱里,GL;德兰蒂,N.;卡尔维宁,R.;杰克逊,G.D.; Kowalczyk,M.;马斯卡尔奇,M.; Semmelroch,M.;托马斯,R.H.; Soltanian-Zadeh,H.; Davoodi-Bojd,E.;张,J.; Lenge,M.;格里尼(Guerrini),R.;巴托利尼,E.;哈曼迪,K.;福利,S.;韦伯,B.; Depondt,C.;阿布西尔,J.;卡尔,SJA;阿贝拉,E.;理查森,国会议员;德文斯基,O.;塞韦里诺,M.;斯特拉诺,P.;帕罗迪,C.; Turtledove,D.;哈顿,S.N.你,SB;邓肯,J.S.; Galovic,M.;惠兰,CD; Bargalló,N.; Parente,J.; Conde-Blanco,E.;沃达诺,AE; Tondelli,M.;梅莱蒂,S.;孔祥哲;弗兰克斯,C.;费舍尔,SE;卡尔达鲁,B.;赖顿,M.;拉巴特,A.;西索迪亚,SM;汤普森,PM;麦当劳,C.R.;贝尔纳斯科尼,A.;贝尔纳斯科尼,N.; Bernhardt,BC 2022,文章/致编辑的信(Brain,145,4,(2022),第 1285-1298 页)
将基于多甲基丙烯酸酯/多甲基丙烯酸酯(PS/ PMMA)块共聚物组成的自组装形成的纳米骨的最佳策略投资到硅底物中。作者表明,特定问题与通过自组装获得的PS面膜的等离子体蚀刻有关。的确,由于亚15 nm接触孔的纳米尺寸及其固有的高纵横比(> 5),因此必须重新审视微电子工业中通常用于蚀刻SIO 2和硅的等离子体蚀刻过程。特别是,蚀刻各向异性依赖于特征侧壁上钝化层的形成的过程不适合纳米尺寸,因为这些层倾向于填充导致蚀刻停止问题的孔。同时,与在高方面比率纳米骨中克服差分充电效应的典型过程相比,必须增加离子轰击能。然而,通过将适当的过程(例如同步的脉冲等离子体)进行开发,作者表明,通过使用块共聚物和硬面膜策略,可以将70nm深的孔深孔进入硅。这些实验产生的另一个有趣的观察结果是,对于亚15 nm孔,几个nm的临界维度(CD)缩合会导致强大比率依赖性蚀刻速率。此外,在每个等离子体步骤之后,对孔的CD的分散体进行了仔细的分析表明,CD控制远非令人满意的高级CMOS技术要求。v C 2014美国真空学会。[http://dx.doi.org/10.1116/1.4895334]关键问题来自从PS/PMMA矩阵中的未完成的PMMA在我们的自组装过程中的去除:可变量的PMMA保留在PS孔中,从而导致蚀刻步骤中的微功能效应,从而产生CD控制损失。也许可以通过将紫外线释放酸处理与乙酸处理相结合,以在等离子体蚀刻之前提供不含PMMA残基的PS膜,以解决此问题。
在过去的二十年中,对全身麻醉(GA)的安全担忧是由于在各种药理条件和动物模型中记录脑细胞死亡的研究引起的。如今,在整个新生小鼠大脑中对Sevoflurane诱导的细胞凋亡的彻底表征将有助于识别并进一步关注潜在的机制。使用组织清除和免疫组织化学,我们在产后日(P)7小鼠中对七氟氨酸诱导的凋亡进行了全脑作图。我们发现切割叶片3染色的解剖学上异体增加。新型P7脑图集的使用表明,新皮层是受影响最大的区域,其次是纹状体和脑脑。皮质切片中的组织学表征确定有丝质神经元是受影响最大的细胞类型,并遵循后骨皮质浅层层中最大凋亡的心脏内和心脏内梯度。这里使用的无偏解剖学映射使我们能够在围产期,新皮层受累,并指示纹状体和脑遗传损伤的同时,同时表明中度的海马一方面。新皮质梯度的鉴定与成熟依赖性机制一致。然后,进一步的研究可以集中于七氟醚对发育过程中神经元迁移和生存的干扰。
Tao Xiang,Xianghong Dong,Tao JU,Lei Shi,GaêlGrenouillet。 在过去的120年中,人为活动和环境过滤在中国重塑了淡水鱼类生物多样性模式。 环境管理杂志,2023,344,pp.118374。 10.1016/j.jenvman.2023.118374。 hal- 04718789Tao Xiang,Xianghong Dong,Tao JU,Lei Shi,GaêlGrenouillet。在过去的120年中,人为活动和环境过滤在中国重塑了淡水鱼类生物多样性模式。环境管理杂志,2023,344,pp.118374。10.1016/j.jenvman.2023.118374。hal- 04718789
“我们的研究结果挑战了大脑动力学的传统观点,这种观点通常认为信息处理是局部的,”这项研究的第一作者 Felix Effenberger 说。“相反,我们认为大脑使用波以高度分布式和并行化的方式进行计算。这种基于波的响应产生的干涉模式有利于对刺激特征之间的空间和时间关系进行整体表示和高度分布式编码。”
其中n i = | {t≤n≤2t - 1:s n,τ= i} | ,i = 0,1。与经典的自相关相比,算术自相关是伪随机序列的携带相关函数。Goresky和Klapper [3]将算术自相关扩展到互相关,并给出了具有理想算术交叉相关性的二进制序列的大家族。后来,他们将算术自相关推广到[4,5]中的非二元序列。对于更多背景,读者被转介给[6]。序列的算术相关性预计将尽可能小。在[2]中提出了legendre序列算术自相关的非平凡结合。Hofer,M´erai和Winterhof [7]证明了算术自相关性和较高订单的相关度量的关系如下:
睡眠对健康的认知(包括记忆)至关重要。睡眠的两个主要阶段,即 REM 睡眠和非 REM 睡眠,与使用表面和颅内电极记录的特征性电生理模式有关。这些模式包括非 REM 睡眠期间的尖锐波纹、皮质慢振荡、δ 波和纺锤波,以及 REM 睡眠期间的 θ 振荡。它们反映了底层神经回路的精确定时活动。在这里,我们回顾了这些电信号如何指导我们对维持睡眠期间记忆巩固的回路和过程的理解,重点关注海马 θ 振荡和尖锐波纹以及它们如何与皮质模式协调。最后,我们强调了这些大脑模式如何也能维持依赖睡眠的稳态过程,并提出了研究睡眠记忆功能的几个潜在未来方向。
膜联蛋白(ANNS)是一个在植物生长,发育和压力反应中起关键作用的进化保守,依赖钙依赖性的磷脂结合蛋白的家族。利用26个高质量玉米基因组的泛基因组,我们鉴定了12个ANN基因,其中包括9个核心基因(以所有26条线为单位)和3个近核基因(以24-25条为单位)。这突出了基于单个参考基因组研究ZMANN基因的局限性。评估26个品种中ANN基因的KA/KS值表明Zmann10在某些品种中处于正选择状态,而其余基因的Ka/ks值小于1,表明纯化选择。系统发育分析将ZMANN蛋白分为六组,其中VI仅包含ZMANN12。某些品种的结构变化改变了保守的结构域,产生了许多非典型基因。转录组分析表明,不同的ANN成员在各种组织以及不同的非生物和生物应力处理下具有不同的表达模式。在冷应力下,来自各种玉米组织的转录组数据的加权基因共表达网络分析鉴定出参与共表达模块的四个ANN基因(Zmann2,Zmann6,Zmann7,Zmann9)。总体而言,这项研究利用高质量的玉米pangenomes对Zmann基因进行生物信息学分析,为ZMANN基因的进一步研究提供了基础。
新颖的肌肉交流pa7erns的用户是运动技能学习的关键方面,例如,当初学者音乐家学习新吉他或钢琴和弦时,可以看到。要研究此过程,在这里,我们引入了一种新的范式,该范式需要快速,同步的频率和延伸。首先,par-Cipant prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-ins-intric figer flim孔和掌pophopophangect围绕的延伸(即和弦)。我们发现,有些和弦极具挑战性,但是Par-Cipant最终可以通过Prac-Ce来实现它们,这表明,肌腱和韧带间造成的硬性困难并没有反映强力的生物力学约束。在第二个实验中,我们发现和弦学习在很大程度上是特定的,并且没有推广到未经训练的和弦。最后,我们探索了哪些因素使一些和弦比其他和弦更加困难。di coulty是由该和弦所要求的肌肉交流pa7ern很好地预测的。与ngly相互困难,与相似的和弦与日常手用所需的肌肉交流pa7ern相似,以及与肌肉交流的整体大小相关。一起,我们的结果表明,这项工作中引入的新范式可能会提供一个有价值的工具来研究人类运动系统中新型肌肉助理Pa7erns的易用性神经过程。
Short title: Tbx3/Tbx5 patterns the cardiac conduction system Key words: Tbx3, Tbx5, T-box transcriptional factors, cardiac conduction system (CCS) , ventricular conduction system (VCS), Tbx3 : Tbx5 double-conditional mouse line, Tbx3 : Tbx5 -deficient mice , reprogramming of VCS, heart rhythm,心律不齐,心形构图 *请发送信函:伊万·莫斯科维茨(Ivan P. Moskowitz),医学博士,博士学位。儿科,病理学和人类遗传学系芝加哥大学900 East 57 The Street,KCBD街5102芝加哥,伊利诺伊州芝加哥,60637电话:773/834-0462 imoskowitz@uchicago.uchicago.edu ozanna bunnicka-turek,Ph.d。儿科,病理学和人类遗传学系芝加哥大学900 East 57 The Street,KCBD Room 5240,LB1芝加哥,伊利诺伊州60637电话:773/702-2486 burnickatureko@uchicago..edu