3效率算法12 3.1阶段1:线性编程。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 3.2阶段2:舍入。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 3.2.1边缘步行算法和部分着色引理。。。。。。。。。。。。。。24 3.2.2完整的算法及其性能保证。。。。。。。。。。。。25 3.3我们算法的阈值作为边缘的函数。。。。。。。。。。。。。。。。29 3.3.1大负缘。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 3.3.2边缘零。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 3.3.3大正边缘。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34 3.4辅助引理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35
量子机器学习算法可以显著提高其速度,但其是否也能实现良好的泛化仍不清楚。最近,Wiebe 等人 [2016] 提出了两个量子感知器模型,它们使用 Grover 搜索比经典感知器算法实现了二次方的改进。第一个模型降低了与训练集大小相关的复杂度,而第二个模型则提高了感知器错误数量的界限。在本文中,我们介绍了一种混合量子-经典感知器算法,其复杂度低于经典感知器,泛化能力优于经典感知器。我们在样本数量和数据边际方面都比经典感知器实现了二次方的改进。我们推导出了算法返回的假设预期误差的界限,与使用经典在线感知器获得的误差相比,该界限更为有利。我们利用数值实验来说明量子感知器学习中计算复杂性和统计准确性之间的权衡,并讨论将量子感知器模型应用于近期量子设备的一些关键实际问题,由于固有噪声,其实际实施面临严峻挑战。然而,潜在的好处使得纠正这个问题值得。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
纯量子力学特性(例如相干性和纠缠)可以解决困难的计算任务,与经典计算相比,其性能呈指数级提升 [8]。这两个领域取得的巨大成功正推动量子机器学习研究的快速发展,探索机器学习和量子计算之间的相互作用,以了解这两个领域是否可以互利互惠。最简单的人工神经元模型可以追溯到经典的Rosenblatt感知器[9],它可以看作是最简单的二元分类学习算法。可以考虑通过量子架构实现感知器的多种可能性[10-16]。在这种情况下,研究特定量子感知器模型相对于其经典对应物实现量子优势的能力非常重要。单个经典感知器的主要限制在于,分类任务是通过在包含定义模式的 N 个特征的向量空间中的超平面将属于不同类别的模式分离来完成的。特别地,人们很快指出,简单的感知器无法计算 XOR 函数 [17],因为这对应于一个分类问题,其中不同的类别不能用平面上的一条线分开。然而,人们发现,当考虑大量特征时,即对于具有大维度 N 的向量空间中的模式,给定 p 个随机标记模式,如果 p < 2 N 且 N 很大,则感知器无法对它们进行分类的可能性极小[18,19]。相反,当 N 很大时,当 p > 2 N 时,简单感知器能够对 p 个随机标记模式进行分类的概率变得非常小。显然,表征感知器性能的重要参数是比率 α = p / N ,并由此确定该比率的临界值作为经典感知器的模式容量,即 α c = 2。在开创性的工作 [ 20 ] 中,Gardner 采用统计物理工具特别是无序系统理论的方法,对神经网络的模式容量提出了一种新方法。找到分离随机标记模式的超平面的可能性实际上属于随机约束满足问题类 [ 16 , 21 , 22 ],可以使用自旋玻璃的统计理论进行研究。在这个方法中,参数 α 在高维情况下引起相变,模式容量由分离 SAT 相的临界值 α c 决定,对于 α < α c ,可以满足所有约束,即将所有模式从 UNSAT 相中分类,α > α c ,其中未满足约束的最小数量大于零。在这里,我们将遵循 Gardner 的统计方法,推导 [14] 中引入的基于连续变量多模式量子系统的特定量子感知器模型的模式容量。我们表明,该模型与经典模型相比没有任何量子优势,因为其容量始终小于其经典极限。本文结构如下。在第 2 节中,我们介绍了经典感知器及其模式容量的定义。在第 3 节中,我们描述了正在研究的量子感知器模型,并展示了由此产生的模式容量。在第 5 节中,我们详细解释了所采用的技术,这些技术基于 Gardner 用来确定经典感知器的模式容量的相同统计方法。最后,在第 4 节中,我们讨论了本文获得的结果,并将它们与同样通过统计方法获得的模式容量进行了比较,但针对的是不同的量子感知器模型。
y3 =θ(-0.5)…………………………(35)在方程35上应用单位步长函数,因此,y3 = 0代替wand1,wand2,wand2,band 2 24 y =θ((1*y3) +(1*y3) +(1*y2 y2 y2 y2 y2) +(-1.5) +(-1.5);考虑y2 = 0,y3 = 1,在等式中替换为36 y =θ((1*1) +(1*0) +(-1.5))y =θ(-0.5)…………………………………………………………(37)在方程式37上应用单位步骤37,因此,y = 0 case 2: (1*1) +(-1.5))y =θ(0.5)…………………………(38)在方程38上应用单位步长函数,因此,y = 1案例3:考虑y2 = 1,y3 = 1,在等式36 y =θ((1*1) +(1*1) +(1*1) +(1*1) +(-1.5)y = 5)(36 y = fime)因此,在公式39上,y = 1案例4:考虑y2 = 1,y3 = 0,在等式36 y =θ((1*0) +(1*1) +(1*1) +(-1.5))y =θ(-0.5))………………………………………………(40)在等式40,y = 0 4.
提交轨道 摘要 提交日期:2024 年 11 月 7 日 糖尿病是一种慢性代谢疾病,其特征是由于身体产生胰岛素的能力受损而导致血糖水平高(高血糖症)。根据国际糖尿病联合会 (IDF) 的数据,糖尿病患者的数量将在 2024 年迅速增加到 7 亿人。因此,我们需要找出感染糖尿病的诱因。其中之一是使用机器学习方法。机器学习用于对哪些因素可能导致感染糖尿病进行分类。进行这种分类的众所周知的方法之一是多层感知器 (MLP) 方法,它是一种由多层组成的人工神经网络 (ANN),其中每层都有相互连接的节点。它的优点是它能够处理复杂数据特征之间的非线性关系——包括患者数据和患者的疾病——因此据说这种方法与本研究非常相关。研究人员还将 MLP 的准确率与其他几种算法(如随机森林、支持向量机和 K-最近邻)进行了比较。这旨在评估 MLP 与其他方法相比在糖尿病分类中的有效性。此外,研究人员还希望克服传统方法在糖尿病分类中的弱点,并提供基于人工智能的解决方案,方法是利用 MLP 处理医疗数据并关注可能影响糖尿病患者的参数或特征。机器学习中的几种技术,如正则化和超参数优化可以防止过度拟合,数据规范化和降维可用于提高模型输入的质量,从而最大限度地提高准确率并使诊断过程更快、更准确。结果表明,与其他算法相比,MLP 在对该疾病进行分类方面具有良好的性能。MLP 获得更稳定、更高的结果。总体而言,可以说 MLP 的应用对改善糖尿病诊断系统做出了重大贡献,有望应用于医疗系统。
摘要:在量子计算中,什么贡献了量子计算的至高无上?候选者之一是量子相干性,因为它是各种量子算法中使用的资源。我们揭示量子相干性有助于训练Y。du et al。,arxiv:1809.06056(2018)。详细说明,在差异量子感知器的训练的第一部分中,总系统的量子相干性集中在指数寄存器中,第二部分中,Grover算法消耗了指数寄存器中的量子相干性。这意味着在训练变异量子感知器时需要量子相干分布和量子相干性耗竭。此外,我们研究了在变异量子感知训练期间纠缠的行为。我们表明,由于Grover操作仅在索引寄存器上执行,因此功能和索引寄存器之间的双方同意下降。另外,我们揭示了索引寄存器的两个量子位之间的同意随着变异量子感知器的训练而增加。
表3。在不同温度和输入查询下微调catgpt模型的有效性,覆盖率和多样性。由于使用旁观方法评估了指标,因此结构有效性为1.00,因此从表中省略了它们。在没有旁观方法的情况下评估的指标可以在补充表2中找到。评估了满足所有有效性标准的样品的多样性指标。“晶格”表示从晶格参数采样的生成结构的结果,而其他结构是从“ ”令牌中采样的。