Hasanain Hayder Razzaq doi:https://doi.org/10.33545/2707661x.2024.v5.i2b.102抽象的皮肤癌源自构成皮肤主要成分的细胞。这些细胞生长,分裂形成新细胞,并随着老化和死亡而替换旧细胞。然而,这个过程有时会出现故障,导致产生不必要的新细胞或旧细胞死亡,从而导致大量被称为肿瘤的组织。在这项研究中,我们专注于使用公开可用的ISIC数据集中的皮肤图像诊断七种类型的皮肤病。作为一种创新,采用了一种称为Google Net的卷积神经网络体系结构,以进行最佳特征提取。随后,使用带有传输学习的三层感知器网络对特征进行了分类。在分类之前,使用BAT优化算法在单独的特征选择阶段选择有效特征。然后将这些优化的特征送入感知到的网络进行分类。所提出的方法的准确性为98%,与基线方法相比,提高了5%。关键字:皮肤疾病,感知到神经网络,蝙蝠优化算法1。引入匹配治疗方法以诊断速度和准确性对当今医学界患者的生活质量和治疗结果至关重要。由于皮肤癌和皮肤疾病中有分化模式和类似症状的错误的机会很高,因此诊断提出了挑战。dl辅助皮肤科医生以0.87的AUC实现了最佳性能。常规的诊断方法大部分时间都取决于专家的经验,有时结果是错误的且耗时的。因此,这种情况证明了在皮肤图像分析的这一领域中改进的技术的依赖性,以提高诊断精度[1]。在这种情况下,人工智能技术,尤其是神经网络,赋予医学成像中自动化和有效分析的可能性。仍然,挑战仍然存在于最佳特征选择和减少计算复杂性。这项工作提出了一个具有多层感知神经网络和BAT优化算法的模型,以有效地解决并为皮肤疾病诊断提供准确的解决方案[2,3],这些问题需要在现实生活中解决方案中解决方案。已经完成了各种工作以提高皮肤病诊断的性能。在研究中,黑色素瘤危险使用了在皮肤镜图像训练的DL模型。dl算法表现出很高的诊断精度,并证明它们可以与经验丰富的皮肤科医生达成平等。当前的研究的目的是批判性地评估DL在诊断黑色素瘤并探索其与皮肤科医生的相互作用方面的性能。通过多个数据库进行系统搜索确定了37项研究,其中27个具有足够的数据将其包括在荟萃分析中。结果:DL特异性的灵敏度为82%,为87%,AUC为0.92。与皮肤科医生相比,DL模型的表现更好,AUC为0.87,而皮肤科医生的AUC为0.83。这些发现表明,DL可以在黑色素瘤诊断中支持皮肤科医生,尽管进一步的大规模研究对于克服医学AI诊断的挑战是必要的。
1 印度旁遮普邦奇特卡拉大学工程技术学院,2 印度加济阿巴德 KIET 机构集团,3 中国浙江嘉兴中大集团,4 黎巴嫩美国大学电气与计算机工程系,黎巴嫩比布鲁斯,5 印度韦洛尔韦洛尔理工学院信息技术与工程学院,6 中国嘉兴嘉兴学院信息科学与工程学院,7 印度帕格瓦拉洛夫利职业大学研究与开发部,8 埃及坦塔坦塔医学院公共卫生与社区医学,9 韩国首尔世宗大学数据科学系,10 韩国水原成均馆大学医学院
纯量子力学特性(例如相干性和纠缠)可以解决困难的计算任务,与经典计算相比,其性能呈指数级提升 [8]。这两个领域取得的巨大成功正推动量子机器学习研究的快速发展,探索机器学习和量子计算之间的相互作用,以了解这两个领域是否可以互利互惠。最简单的人工神经元模型可以追溯到经典的Rosenblatt感知器[9],它可以看作是最简单的二元分类学习算法。可以考虑通过量子架构实现感知器的多种可能性[10-16]。在这种情况下,研究特定量子感知器模型相对于其经典对应物实现量子优势的能力非常重要。单个经典感知器的主要限制在于,分类任务是通过在包含定义模式的 N 个特征的向量空间中的超平面将属于不同类别的模式分离来完成的。特别地,人们很快指出,简单的感知器无法计算 XOR 函数 [17],因为这对应于一个分类问题,其中不同的类别不能用平面上的一条线分开。然而,人们发现,当考虑大量特征时,即对于具有大维度 N 的向量空间中的模式,给定 p 个随机标记模式,如果 p < 2 N 且 N 很大,则感知器无法对它们进行分类的可能性极小[18,19]。相反,当 N 很大时,当 p > 2 N 时,简单感知器能够对 p 个随机标记模式进行分类的概率变得非常小。显然,表征感知器性能的重要参数是比率 α = p / N ,并由此确定该比率的临界值作为经典感知器的模式容量,即 α c = 2。在开创性的工作 [ 20 ] 中,Gardner 采用统计物理工具特别是无序系统理论的方法,对神经网络的模式容量提出了一种新方法。找到分离随机标记模式的超平面的可能性实际上属于随机约束满足问题类 [ 16 , 21 , 22 ],可以使用自旋玻璃的统计理论进行研究。在这个方法中,参数 α 在高维情况下引起相变,模式容量由分离 SAT 相的临界值 α c 决定,对于 α < α c ,可以满足所有约束,即将所有模式从 UNSAT 相中分类,α > α c ,其中未满足约束的最小数量大于零。在这里,我们将遵循 Gardner 的统计方法,推导 [14] 中引入的基于连续变量多模式量子系统的特定量子感知器模型的模式容量。我们表明,该模型与经典模型相比没有任何量子优势,因为其容量始终小于其经典极限。本文结构如下。在第 2 节中,我们介绍了经典感知器及其模式容量的定义。在第 3 节中,我们描述了正在研究的量子感知器模型,并展示了由此产生的模式容量。在第 5 节中,我们详细解释了所采用的技术,这些技术基于 Gardner 用来确定经典感知器的模式容量的相同统计方法。最后,在第 4 节中,我们讨论了本文获得的结果,并将它们与同样通过统计方法获得的模式容量进行了比较,但针对的是不同的量子感知器模型。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
T F = 0的相应传输函数。15,其中虚线曲线代表2 = - 50,a 3 = - 3980。(b)对于t f = 0。15,在使用θ= p 3 i = 0 a i t i(固体蓝色)的情况下,使用θ= p 5 i = 0 a = 0 a i t i具有最佳参数a 2 = - 50,a 3 = -3980(dotted-y/ y/ y/ y/ f = 12 fur = fur = fure), 15。在T min f = 0时最小的操作时间t f到达。 15用于c <0。 01。 数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。 参考文献中介绍了STA与最佳控制理论之间的详细比较。 [1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。 在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。15。在T min f = 0时最小的操作时间t f到达。15用于c <0。01。数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。参考文献中介绍了STA与最佳控制理论之间的详细比较。[1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。
摘要 电力系统的可靠运行是电力公司的一个主要目标,这需要准确的可靠性预测以最大限度地减少电力中断的持续时间。由于天气状况通常是智能电网(尤其是其配电网)电力中断的主要原因,本文全面研究了各种天气参数对配电网可靠性性能的综合影响。特别地,提出了一种基于多层感知器 (MLP) 的框架,使用常见天气数据的时间序列来预测一个配电管理区域中每日持续和瞬时电力中断的次数。首先,实施参数回归模型来分析每日电力中断次数与各种常见天气参数(如温度、降水量、气压、风速和闪电)之间的关系。然后将选定的天气参数和相应的参数模型作为输入,以建立 MLP 神经网络模型来预测每日电力中断次数。引入了一种改进的基于极限学习机 (ELM) 的分层学习算法,使用来自佛罗里达州电力公司的实时可靠性数据和来自国家气候数据中心 (NCDC) 的常见天气数据来训练制定的模型。此外,还实施了敏感性分析以确定各种影响