纯量子力学特性(例如相干性和纠缠)可以解决困难的计算任务,与经典计算相比,其性能呈指数级提升 [8]。这两个领域取得的巨大成功正推动量子机器学习研究的快速发展,探索机器学习和量子计算之间的相互作用,以了解这两个领域是否可以互利互惠。最简单的人工神经元模型可以追溯到经典的Rosenblatt感知器[9],它可以看作是最简单的二元分类学习算法。可以考虑通过量子架构实现感知器的多种可能性[10-16]。在这种情况下,研究特定量子感知器模型相对于其经典对应物实现量子优势的能力非常重要。单个经典感知器的主要限制在于,分类任务是通过在包含定义模式的 N 个特征的向量空间中的超平面将属于不同类别的模式分离来完成的。特别地,人们很快指出,简单的感知器无法计算 XOR 函数 [17],因为这对应于一个分类问题,其中不同的类别不能用平面上的一条线分开。然而,人们发现,当考虑大量特征时,即对于具有大维度 N 的向量空间中的模式,给定 p 个随机标记模式,如果 p < 2 N 且 N 很大,则感知器无法对它们进行分类的可能性极小[18,19]。相反,当 N 很大时,当 p > 2 N 时,简单感知器能够对 p 个随机标记模式进行分类的概率变得非常小。显然,表征感知器性能的重要参数是比率 α = p / N ,并由此确定该比率的临界值作为经典感知器的模式容量,即 α c = 2。在开创性的工作 [ 20 ] 中,Gardner 采用统计物理工具特别是无序系统理论的方法,对神经网络的模式容量提出了一种新方法。找到分离随机标记模式的超平面的可能性实际上属于随机约束满足问题类 [ 16 , 21 , 22 ],可以使用自旋玻璃的统计理论进行研究。在这个方法中,参数 α 在高维情况下引起相变,模式容量由分离 SAT 相的临界值 α c 决定,对于 α < α c ,可以满足所有约束,即将所有模式从 UNSAT 相中分类,α > α c ,其中未满足约束的最小数量大于零。在这里,我们将遵循 Gardner 的统计方法,推导 [14] 中引入的基于连续变量多模式量子系统的特定量子感知器模型的模式容量。我们表明,该模型与经典模型相比没有任何量子优势,因为其容量始终小于其经典极限。本文结构如下。在第 2 节中,我们介绍了经典感知器及其模式容量的定义。在第 3 节中,我们描述了正在研究的量子感知器模型,并展示了由此产生的模式容量。在第 5 节中,我们详细解释了所采用的技术,这些技术基于 Gardner 用来确定经典感知器的模式容量的相同统计方法。最后,在第 4 节中,我们讨论了本文获得的结果,并将它们与同样通过统计方法获得的模式容量进行了比较,但针对的是不同的量子感知器模型。
主要关键词