使用量子处理单元 (QPU) 有望加快解决计算问题的速度,尤其是离散优化问题。虽然已知一些突破性的算法方法可以证明其性能优于传统计算机,但我们观察到构建高效量子算法的编程抽象很少。解决与数据库管理相关的具体问题的文献中,很大一部分集中于将它们转化为二次无约束二进制优化问题 (QUBO),然后可以在基于门的机器(使用量子近似优化算法)或量子退火器上处理这些问题。影响这两种方法的效率和可扩展性的关键方面是如何将经典数据加载到量子位中,以及如何将问题编码为 QUBO 表示。众所周知,编码的有效性对于量子计算机至关重要,特别是在嘈杂的中型量子计算机时代,可用的量子比特数量受到严重限制。在本文中,我们介绍了三种编码模式,讨论了它们对可扩展性的影响以及它们的易用性。我们以娱乐性(但计算挑战性)数独问题及其简化为图形着色为例,讨论它们各自的优点和缺点。我们的目标是使数据库研究人员能够为他们的目的选择合适的编码方案,而无需深入了解量子特性,从而简化在数据管理系统上应用量子加速的途径。
主要关键词