抗铁磁性海森堡模型:大致相邻的量子颗粒的目的是朝相反的方向排列。例如,这种哈密顿量是作为所谓的莫特绝缘子的有效哈密顿人。[图像:Sachdev,Arxiv:1203.4565]
量子算法因其可能显著超越传统算法而越来越受欢迎。然而,量子算法在优化问题中的实际应用面临着与现有量子算法训练效率、成本格局形状、输出准确性以及扩展到大规模问题的能力相关的挑战。在这里,我们提出了一种基于梯度的量子算法,用于具有幅度编码的硬件高效电路。我们表明,简单的线性约束可以直接合并到电路中,而无需使用惩罚项对目标函数进行额外修改。我们使用数值模拟在具有数千个节点的完全加权图的 MaxCut 问题上对其进行测试,并在超导量子处理器上运行该算法。我们发现,当应用于具有 1000 多个节点的无约束 MaxCut 问题时,将我们的算法与称为 CPLEX 的传统求解器相结合的混合方法比单独使用 CPLEX 实现了更好的解决方案。这表明混合优化是现代量子设备的主要用例之一。
具有挑战性的组合优化问题在科学和工程领域无处不在。最近,人们在不同的环境中开发了几种量子优化方法,包括精确和近似求解器。针对这一研究领域,本文有三个不同的目的。首先,我们提出了一种直观的方法来合成和分析离散(即基于整数)优化问题,其中问题和相应的算法原语使用与编码无关的离散量子中间表示 (DQIR) 来表示。与以前的方法相比,这种紧凑的表示通常可以实现更高效的问题编译、不同编码选择的自动分析、更容易的可解释性、更复杂的运行时过程和更丰富的可编程性,我们通过一些示例对此进行了演示。其次,我们对几种量子比特编码进行了数值研究;结果显示了许多初步趋势,有助于指导为特定硬件集和特定问题和算法选择编码。我们的研究包括与图着色、旅行商问题、工厂/机器调度、金融投资组合再平衡和整数线性规划相关的问题。第三,我们设计了低深度图派生部分混合器 (GDPM),最多 16 级量子变量,证明了紧凑(双
在我们最近的工作11中,我们引入了一种基于离散优化的密集图像配准方法,即带有 α 扩展的最小图割。12 其他人之前已经提出过使用最小图割进行图像配准,13、14 但由于该方法的计算成本高,在实践中采用有限。通过将图像划分为子区域,并将每个 α 扩展一次限制在一个子区域,我们能够大幅减少这种配准方法的计算时间,而质量方面仅有很小的损失。处理一个子区域涉及两个步骤:计算体素匹配标准(即构建图形)并通过求解最小图割问题执行离散优化。早期的分析实验表明,对于较小的子区域,大部分计算时间都花在计算匹配标准上,而不是执行图割优化上。当使用计算密集度更高的相似性度量(例如互相关 (CC))时,这种效果更加明显,这已被证明在图像配准中很有价值。15
最近,量子化学计算与机器学习的结合在加速新材料发现方面表现出了巨大的潜力。虽然这种混合方法与传统方法相比消耗的资源和时间更少,但它仍然面临着根本性的挑战。这些挑战包括训练数据集的大小和质量限制,以及使用离散优化技术有效探索大型化学空间的困难。
变分量子算法是近期和未来容错量子设备模拟的前沿。虽然大多数变分量子算法只涉及连续优化变量,但有时可以通过添加某些离散优化变量来显著增强变分假设的表示能力,广义量子近似优化算法 (QAOA) 就是一个例子。然而,广义 QAOA 中的混合离散-连续优化问题对优化提出了挑战。我们提出了一种称为 MCTS-QAOA 的新算法,它将蒙特卡洛树搜索方法与改进的自然策略梯度求解器相结合,分别优化量子电路中的离散变量和连续变量。我们发现 MCTS-QAOA 具有出色的抗噪特性,并且在广义 QAOA 的具有挑战性的实例中优于先前的算法。
旅途中,学生们游览了布拉格,并参观了捷克理工大学和当地公司。亮点包括参观布拉格城堡、圣维特大教堂、圣乔治大教堂、带天文钟的旧市政厅、泰恩教堂以及斯特拉霍夫修道院和图书馆。在捷克理工大学,学生们参观了校园,并详细参观了计算机科学系和捷克信息学、机器人学和控制论研究所(CIIRK)。这次参观包括参加 FIT 讲座和与 CIIRK 教职员工在校园共进午餐。主要演讲来自 G2OAT,这是一个专注于离散优化研究的研究小组。该小组的重点是计算和组合问题,这些问题主要出现在图论、博弈机制、合作和非合作博弈以及计算社会选择理论中。
Richard (Dick) Forrester 博士于 2002 年获得克莱姆森大学数学科学博士学位。他的学术研究领域是计算机科学和运筹学,运筹学是一种分析问题和做出决策的科学方法。他的大部分研究都围绕着开发可以建模为非线性 0-1 程序的问题的解决方法。他指导了许多学生-教师研究项目,这些项目已发表同行评议的出版物,包括开发一种将迪金森学生分配到一年级研讨会的技术、确定学院有机农场的最佳作物轮作以及确定有效主题公园游览的算法。作为一名应用数学家,他的教学兴趣主要集中在运筹学、统计学、数据科学、算法分析和计算数学方面。他的作品发表在《离散优化》、《运筹学快报》、《海军研究后勤》和《社会经济规划科学》等高质量期刊上。
量子退火器是量子计算的另一种方法,它利用绝热定理有效地找到物理上可实现的哈密顿量的基态。此类设备目前已在市场上销售,并已成功应用于多个组合和离散优化问题。然而,由于难以将分子系统映射到伊辛模型哈密顿量,量子退火器在化学问题中的应用仍然是一个相对稀少的研究领域。在本文中,我们回顾了两种使用基于伊辛模型的量子退火器寻找分子哈密顿量的基态的不同方法。此外,我们通过计算 H + 3 和 H 2 O 分子的结合能、键长和键角并映射它们的势能曲线来比较每种方法的相对有效性。我们还通过确定使用各种参数值模拟每个分子所需的量子比特数和计算时间来评估每种方法的资源需求。虽然每种方法都能够准确预测小分子的基态特性,但我们发现它们仍然不如现代经典算法,并且资源需求的扩展仍然是一个挑战。
算法,该算法根据飞行目的地、跑道角度、机场附近飞机的空间间隔、人口分布和转向运动来考虑引导点。高度路径针对低感知噪音和低燃料消耗进行了优化,这是通过使用从该表面路径计算出的距离求解飞行纵向控制运动方程来确定的。开发了一种改进的非支配排序遗传算法 II 用于离散优化,以减少计算工作量来获得最佳高度路径的帕累托前沿。通过模拟从香港国际机场飞往两个强制空中交通服务报告点的航班来演示该方法。然后将结果与快速访问记录器数据和标准仪表离场 (SID) 轨迹进行比较。虽然该方法没有考虑影响出发路径规划的某些航空运输因素,例如天气模式和空中交通组合,但最终的地面路径与 SID 轨迹非常相似。由此产生的高度路径的帕累托前沿显示燃料消耗和感知噪音水平降低。还根据不同航线的相关飞行物理讨论了燃料消耗和感知噪音水平之间的权衡。