摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
图 6 示例性注意力矩阵,可视化三位参与者在收敛时的注意力得分(来自随机选择的训练样本)(值越亮表示注意力得分越高)。解码器中的时间步长在 y 轴上表示,编码器的时间步长在 x 轴上表示。对角线结构表明注意力得分在时间域上是很好地对齐的,例如输出中的后续步骤关注输入中的后续步骤。该图还表明,填充输入 sEEG 序列(语音规划和理解)可能是不必要的,因为没有太多注意力放在第一个和最后一个输入步骤上。
对机器任务的深视频压缩(DVC)的事先研究通常需要为每个特定任务培训一个独特的编解码器,从而规定每个任务的专用解码器。相比之下,传统视频编解码器采用了flex ible编码器控制器,从而通过模式预测等机制使Single编解码器适应了不同的任务。从中汲取灵感,我们引入了一个创新的编码器控制器,以用于机器的深度视频压缩。此控制器具有模式预测和一组图片(GOP)选择模块。我们的AP-ARACH在编码阶段集中控制控制,从而允许跨不同任务(例如检测和跟踪)进行适应性的编码器调整,同时与标准的预训练的DVC解码器保持合理性。示例证明我们的方法是在具有各种现有预训练的DVC的多个任务中适用的。此外,广泛的实验表明,对于不同的任务,我们的方法比以前的DVC比以前的DVC大约25%,只有一个预先训练的解码器。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
癌症免疫疗法已通过刺激宿主免疫系统识别和攻击癌细胞来治疗多种恶性肿瘤。免疫原性细胞死亡(ICD)可以扩增抗肿瘤免疫反应并逆转免疫抑制性肿瘤微环境,从而提高癌症免疫疗法的敏感性。近年来,非编码RNA(NCRNA)已成为ICD和肿瘤免疫的关键调节因素。因此,与ICD相关的NCRNA有望成为优化癌症免疫疗法有效性的新型治疗靶标。然而,尚未全面总结与ICD相关的NCRNA的免疫调节特性。因此,我们总结了有关ICD涉及的NCRNA的当前知识及其在癌症免疫疗法中的潜在作用。它加深了我们对与ICD相关的NCRNA的理解,并通过特定针对ICD相关的NCRNA提供了一种新的策略来增强癌症免疫疗法。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
实习的主要目标是对网格代表领域内的当前文献进行彻底审查。随后,目的是设计和实现3D网格自动编码器,以便能够准确捕获对象的形状并有效地将它们压缩到潜在表示中。利用潜在空间已被证明在生成模型中非常有效,如文本对图像模型中所示[6,7]。该自动编码器的潜在应用是多种多样的。主要是,它有可能通过促进潜在空间内的直接操作来大大减轻模型的计算负担。这不仅解锁了在网格序列上无缝工作的运动模型的可能性,而且还使模型的扩展能够处理多个字符,从而结合了它们之间的相互作用。其次,潜在空间可用于生成模型中,从而促进了从文本/图像/视频到姿势/运动的翻译。
由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。