由于带注释的样本稀缺,病理性脑损伤在图像数据中的复杂表现对监督检测方法提出了挑战。为了克服这个困难,我们将重点转移到无监督异常检测。在这项工作中,我们专门使用健康数据训练所提出的模型,以识别测试期间未见的异常。这项研究需要调查基于三元组的变分自动编码器,以同时学习健康脑数据的分布和去噪能力。重要的是,我们纠正了先前基于投影的方法中固有的一个误解,该误解依赖于这样的假设:图像内的健康区域在重建输出中将保持不变。这无意中暗示了病变图像和无病变图像在潜在空间表示上存在相当大的相似性。然而,这种假设可能并不成立,特别是由于病变区域强度对投影过程的潜在重大影响,特别是对于具有单一信息瓶颈的自动编码器。为了克服这个限制,我们将度量学习与潜在采样分离。这种方法确保病变和无病变输入图像都投影到相同的分布中,特别是无病变投影。此外,我们引入了一个语义引导的门控交叉跳过模块来增强空间细节检索,同时抑制异常,利用解码器更深层中存在的健壮健康大脑表示语义。我们还发现,将结构相似性指数测量作为额外的训练目标可以增强所提模型的异常检测能力。
摘要。多模式图像的使用通常可以改善分段。但是,由于临床限制,完整的多模式数据集通常不可用。为了解决这个问题,我们提出了一个新颖的mul-timodal分割框架,该框架可通过使用利益区域(ROI)细心的模态完成,可以使缺少模态固定。我们使用ROI专注的跳过连接专注于与分割相关的收件,以及结合肿瘤ROI的关注点和分割概率图的关节歧视者,以学习与分割与分割相关的共享潜在表示。我们的方法在脑部分割挑战数据集中得到了285例,该数据集的全部肿瘤,肿瘤核心和增强肿瘤的三个区域。它也是在缺血性卒中病变分割挑战数据集上的带有28例梗塞病变的阀门。我们的方法在强大的多模式分割中优于最先进的方法,分别为三种类型的脑肿瘤区域的平均骰子分别为84.15%,75.59%和54.90%,中风病变的平均骰子为48.29%。我们的方法可以改善需要多模式图像的临床工作流程。
摘要 20 世纪中叶,两门新的科学学科强势崛起:分子生物学和信息通信理论。起初,两者的相互影响十分深刻,以至于遗传密码这一术语被普遍接受用来描述 mRNA 三联体(密码子)作为氨基酸的含义。然而,如今,这种协同作用并未充分利用这两门学科的飞速发展,而是带来了更多的挑战而不是答案。这些挑战不仅具有重大的理论意义,而且代表了下一代生物学不可避免的里程碑:从个性化基因治疗和诊断到人工生命,再到生物活性蛋白质的生产。此外,这一问题与理论生物学所需的范式转变密切相关,这种转变早已开创,需要生物学领域以外的学科共同做出贡献。信息作为概念隐喻的使用需要转化为定量和预测模型,这些模型可以通过经验检验并以统一的视角进行整合。要成功完成这些任务,需要采取广泛的多学科方法,包括人工生命研究人员来解决这一问题。
抽象周围神经系统(PNS)和中枢神经系统(CNS)啮齿动物髓素(由不同的细胞类型产生)具有共同的形态和功能特征,尽管它们的主要积分膜蛋白是完全不同的。两种类型的髓磷脂how- ever,包含四种髓磷脂碱性蛋白(Mbps),它们具有相似的免疫化学和电泳特性。我们已经分离并表征了与大鼠mRNA相对应的cDNA克隆,这些cNS和PNS髓磷脂中发现的小Mbps(SMBP)。对这些克隆的序列分析表明,神经系统的两个分裂中的SMBP均由相同的核苷酸序列编码,这表明它们是在少突胶质细胞和Schwann细胞中表达的相同基因的产物。与CNS SMBP cDNA作为探针中的点印刷杂交实验,结果表明,在CNS髓磷脂中,MBP mRNA水平高20倍,而总脑干mRNA中的MBP mRNA水平高20倍。还发现,在含有少突drocytes和schwann细胞的视神经和坐骨神经中,MBP mRNA的水平分别高(分别为4倍和2倍)。印迹杂交实验表明,源自大鼠SMBP cDNA的编码区域的探针杂交与人视神经中存在的同源mRNA(= 2.6千行酶),该探针无法检测到从3'未转移的区域中得出的探针。这种编码区域序列的保守性与两种物种中MBP报告的高度同质氨基酸序列一致。
我们为孩子们创建了 7 项免费编码活动,您可以将其添加到您的家庭学校课程中,以教授编码的基本原理。它包括有趣、儿童友好的最爱,如编码单词搜索和编码填字游戏。您还可以使用我们的可打印工作表向孩子们教授算法、ASCII 代码和冒泡排序。为您的学生打下元认知、解决问题和抽象思维的基础。
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
一、概述 计算机科学是 RMS 提供的 3 门循环课程中的第一门。解决我们作为一个社会所面临的关键挑战所需的新方法将需要利用技术和计算的力量。快速变化的技术和数字信息的激增已经渗透并彻底改变了学习、工作和日常生活。要成为计算密集型世界中受过良好教育、具有全球意识的人,学生必须清楚地了解计算机科学的概念和实践。随着教育系统适应学生不仅是计算机用户而且是精通计算机科学和设计思维概念和实践的计算素养创造者的愿景,通过学习计算机科学和技术让学生参与计算思维和以人为本的设计方法有助于让学生为合乎道德地生产和批判性地消费技术做好准备。(新泽西州教育部)
我们的 LMS 专注于基于项目的学习,可实现知识的实际应用,树立新的教育标杆。它为教师提供强大的支持,具有直观的界面和出色的计算机科学课程所需的基本资源。Cyber Square 不仅仅是一个平台;它是一项面向未来的学习生态系统的投资,可帮助学生和教育工作者在数字时代脱颖而出。