摘要:我们提出了拓扑电荷的持续定义,以描绘光子晶体板中任何谐振衍射阶的极化缺陷,无论它们是辐射的或evane的。通过使用这种广义定义,我们研究了整个布里鲁因区域的极化缺陷的起源和保护。我们发现,由于布里鲁因区域折叠而引起的模式横梁有助于整个布里渊区的极化缺陷的出现。这些极化缺陷的事件始终源自在布里鲁因区中心或边缘固定的线变性的自发对称性断裂,或者是由意外的Bloch带交叉点引起的频段耦合。与Bloch陈述不同,两极分化缺陷在不绑定的动量空间中生存和进化,从而遵守了局部保护定律,这是Stokes定理的直接结果,但总电荷数量无数。
摘要:三光子产生 (TPG) 是一种三阶非线性光学相互作用,其中能量为 ћω p 的光子分裂为三个光子,分别为 ћω 1 、 ћω 2 和 ћω 3,其中 ћω p = ћω 1 + ћω 2 + ћω 3。三重态具有与光子对不同的量子特征,这对量子信息具有浓厚的兴趣。在本研究中,我们首次实验演示了在 ћω 1 处对三重态的一种模式进行刺激的 TPG,之前对 TPG 的研究涉及在 ћω 2 和 ћω 3 处对两种模式进行刺激。非线性介质是在 λ p = 532 nm 下以皮秒模式(15 ps,10 Hz)泵浦的 KTiOPO 4 晶体。刺激光束由可调光学参量发生器发射:在刺激波长 λ 1 = 1491 nm 处发现相位匹配,三重态的另外两个模式在正交极化下为 λ 2 = λ 3 = 1654 nm。使用超导纳米线单光子探测器,对两个生成模式的极化和波长特征的测量与计算完全一致。在模式 2 和 3 上每个脉冲可以产生总计 2 × 10 4 的光子数,这相当于每个脉冲产生 10 4 个三重态,或者每秒产生 10 5 个三重态,因为重复率等于 10 Hz。我们在未耗尽泵浦和刺激近似下,在海森堡表示中的非线性动量算符的基础上开发的模型框架中解释了这些结果。
通道位置查找是确定背景通道集合中单个目标通道位置的任务。它有许多潜在的应用,包括量子传感、量子读取和量子光谱。特别是,它可以允许将简单的检测协议扩展到测量协议,例如,使用量子照明进行目标测距。在此类协议中使用量子态和纠缠已证明比最佳经典协议具有量子优势。在这里,我们考虑使用平均每个模式最多一个光子的源进行量子通道位置查找,使用离散变量形式。通过考虑各种量子源,通过推导性能界限可以证明可以实现量子增强。
摘要:我们证明,新设计的含有聚合用乙烯基反应基团的氨基酸磷二酰胺树脂 (APdA) 可用于通过 3D 多光子光刻制造亚 100 纳米结构。我们使用原子力和单分子荧光显微镜定量分析了纳米结构的特征尺寸、杨氏模量和功能化。我们的结果表明,由缬氨酸或丙氨酸组成的聚合物主链赋予单体疏水性,将聚合物纳米结构在水环境中的膨胀限制在 8% 以内。尽管膨胀很小,但实验表明,在干燥和潮湿条件下,杨氏模量变化高达 10 倍。为了增强基于 APdA 的结构的多功能性,我们加入了生物素功能化并将其用于固定细胞外囊泡。因此,这些发现凸显了基于 APdA 的纳米光刻光刻胶在生物医学和纳米技术应用方面的潜力。
摘要 — 为了突破电气链路的带宽和延迟限制,高性能计算集成的下一个突破最终将通过光子技术和片上光网络 (ONoC) 实现。这项工作介绍了 ONoC 的整体架构,并报告了在 200 mm Leti 平台上 SOI 晶圆上的 Si 光子中介层的详细集成和制造。已成功实现了在 1310 nm 波长下工作的有源光子电路、12 µm 直径 100 µm 高度的硅通孔 (TSV) 中间工艺、带有 µ 柱的四层金属后端线路 (BEOL) 和加热器上方带有热腔的背面重分布层。横截面的形态表征评估了工艺发展和集成结果。在有源光子末端和 TSV / BEOL 工艺之后,在肋和深肋结构上测量的光传播损耗以及在单偏振光栅耦合器 (SPGC) 结构上的插入损耗均未显示偏差。 TSV 中间电阻经评估低于 22 mΩ,成品率大于 95%。最后,讨论了功能性 ONoC 系统所需的所有单个工艺块,尤其是环形调制器,以及它们成功优化的协同集成。
量子纳米结构的开发对于在长波长红外(LWIR)窗口中的光电探测器技术的发展至关重要,尤其是成功实施量子点(QDS)具有可能导致该领域的世代相传的潜力[1]。尽管有承诺,但与最先进的技术相比,基于QD的光电探测器的性能仍然缺乏。我们提出了一种创新的解决方案,可以通过利用量子点局部状态到连续体中的谐振状态的吸收来超过当前的基于QD的检测器,即半导体导带中的状态具有增强的量子点区域的概率密度[2]。这种方法利用了此类状态的独特特性,可以大大增强载体提取,从而克服了基于量子点的红外探测器的最关键缺点之一。
摘要:可见光集成光子学可用于传统(C 波段和 O 波段)硅光子学无法实现的应用,包括囚禁离子和中性原子量子实验、生物光子学和显示器。尽管展示了越来越先进的功能和集成度,但低功耗、单片集成的可见光开关和移相器的开发仍然是一项艰巨的挑战。在这里,我们展示了一种用于可见光谱的集成光子静电 MEMS 驱动的 Mach-Zehnder 干涉仪光开关。该设备在 540 nm 波长下以 7.2 dB 的消光比和 2.5 dB 的光损耗运行。测得的 10-90% 上升(下降)时间为 5(28)µ s,实现了约 0.5 nW 的低静态功耗。30 kHz 开关频率下的动态功耗估计为 < 70 µW。
1丹麦大学医院,丹麦2号丹麦粒子疗法中心,丹麦2号大学医院,鲁南大学,辐射肿瘤学系,比利时3号肿瘤学和医学物理学系,奥尔胡斯大学医院,阿尔胡斯,阿尔胡斯,丹麦4丹麦4列克斯大学,英国利兹大学,英国5大学医院。格罗宁根,大学医学中心格罗宁根,格罗宁根,荷兰7大学医院NHS基金会信托基金会,英国8号放射疗法和放射肿瘤学系,医学院和大学医院卡尔·古斯塔夫·卡鲁斯(Carl Gustav Carus) Oncoray - 国家肿瘤学国家中心,医学院和大学医院Carl Gustav Carus,TechnischeUniversitätDresden,Dresden和Helmholtz-Zentrum Dresden-Rossendorf;放射学研究所 - Oncoray Helmholtz-Zentrum Dresden-Rossendorf,德国; 9丹麦奥尔胡斯大学卫生科学学院临床医学系10辐射肿瘤学系(Maastro),种植荷兰马斯特里赫特大学医学中心+的肿瘤学和繁殖学校。11质子治疗中心,瑞士维利根的保罗·施雷尔学院;瑞士苏黎世苏黎世大学医院辐射肿瘤科。12 Ku Leuven - 鲁汶大学,肿瘤学系,实验放射疗法实验室,比利时鲁汶13卫生经济学分析与研究方法团队(HERT),UCL研究部英国伦敦的初级保健和人口健康部门14部英国伦敦的初级保健和人口健康部门14部手术和移植,哥本哈根大学医院Rigshospitalet,丹麦哥本哈根 *共享第一授权#共享最后的作者身份
* 通讯作者:Tobias Heindel,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404X Lucas Rickert、Daniel A. Vajner、Martin von Helversen、Sven Rodt 和 Stephan Reitzenstein,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:lucas.rickert@tu-berlin.de(L. Rickert)。https://orcid.org/0000-0003-0329-5740(L. Rickert)。https://orcid.org/0000-0002-4900-0277(DA Vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838 (S. Reitzenstein) Kinga Żołnacz,弗罗茨瓦夫科技大学光学与光子学系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0002-1387-9371 刘汉清,李树伦,倪海桥,牛志川,中国科学院半导体研究所光电材料与器件重点实验室,北京 100083;中国科学院大学材料科学与光电工程中心,北京 100049,E-mail: zcniu@semi.ac.cn (Z. Niu)。 https://orcid.org/0009-0004-7092-2382(H.刘)。 https://orcid.org/0000-0002-9566-6635 (Z. Niu) Paweł Wyborski,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰;丹麦技术大学电气与光子工程系,2800,Kgs.,Lyngby,丹麦 Grzegorz Sęk 和 Anna Musiał,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0001-7645-8243(G. Sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)
