抽象的空间环境对于重力(重力修饰,水分布),辐射(突变增强子),光谱状态和温度不是最佳的植物生长和存活而言是极端的。光合微生物是一种可预见的解决方案,用于支持封闭环境中的植物发育,生长和胁迫耐受性,例如为空间定植设计的植物。的确,光合微生物被称为二级代谢产物(外多糖,吲哚生物碱,肥料),能够影响植物刺激。研究其能力,应用方法和太空农业的最佳菌株可能会导致开发一种可持续且有效的食品生产方法。此外,由于这些微生物也可以用于生产氧气和回收废物,从而增加了对封闭环系统的兴趣。在这篇评论中,我们概述了有关现有生物刺激物,其影响和应用的当前知识状态,以及光合微生物在封闭环境中生命的潜力。
“现在的商业生产的PHA是如今的高能源密集型,并且在很大程度上依赖有机原材料和清洁水,这与欧盟的目标冲突了循环,可持续的经济。当前的生产过程远离零排放中性碳策略,” Promicon政策简介的作者解释了。该方法发表在《研究思想和结果》杂志上。
氧合光合作用是地球上几乎所有生物量生产的原因,并且可能是建立富含多细胞寿命的复杂生物圈的先决条件。地球上的生命已经演变为在广泛的光线环境中进行光合作用,但具有一个常见的基本结构,该建筑的轻度捕获天线系统与光化学反应中心相连。使用轻度收获的广义热力学模型,再加上进化算法,我们预测了可能根据不同强度和光谱曲线而发展的光收集结构的类型。我们定性地重现了多种类型的氧光自养生体的天线系统的色素组成,线性吸收曲线和结构拓扑,并表明,在各种光明环境中,相同的物理原理在不同的物理原理中发展。最后,我们将模型应用于在类似地球的系外行星上存在的代表性光环境,预测氧气和无氧光合作用都可以在低质量恒星周围发展,尽管后者似乎在最酷的M-Dwarfs周围可以更好地工作。我们将其视为迈出基本生物学过程的一般进化模型的有趣第一步,并证明了假设生物学的本质超出地球具有意义。
光合作用本质上是一个至关重要且普遍存在的复杂物理过程,在某些生物(例如植物和细菌)中,太阳的辐射覆盖了,并转化为生存所需的必要碳水化合物[29,35]。从物理和化学的角度来看,这是一个复杂的过程,它通过几个阶段进行,涉及几种物理现象,即光吸收,能量传输,电荷分离,光磷酸化和二氧化碳固定[17]。在过去的40年中,人们对这种现象的理解取得了很大进步,随着许多光合型复合物的结构的物理表征[7,12,48]。对此类过程的理解将允许能源领域的许多潜在的巨大影响工业突破,从太阳能电池板的能量捕获[32]的巨大效率提高到人工轻降水设备的构建[32]。光合作用始于光子的吸收。它通过激发色素分子而发生,该分子充当蛋白质分子与光合作用仪相连的轻度收获天线。Photosynthetic色素 - 蛋白质复合物以分子电子激发的形式将吸收的阳光能量转移到反应中心,在那里电荷分离引发了一系列的生化过程[35]。这项工作集中在光合作用的第一个阶段,更确切地说,吸收的辐射从天线传输到反应中心,该中心以所谓的激子能量转移(EET)的形式进行,如图1所示。
氢被认为是向可持续和零碳经济过渡的主要推动者之一。从可再生能源生产时,氢可以用作清洁且无碳的能源载体,并提高各种工业过程的可持续性。光生物学生产被认为是最有前途的技术之一,避免了对可再生电力和稀土金属元素的需求,由于当前的同时电气化和脱碳目标,其需求大大增加。光生物学生产采用光合微生物来收集太阳能并将水分成分子氧和氢气,从而解锁了太阳能储能的长期储存目标。然而,光生物学氢的产生已受到几个局限性的限制。本综述旨在讨论有关氢化酶驱动的光生物学生产的当前最新技术。重点放在工程策略上,以表达改进,非本地,氢化酶或光合作用的重新设计,以及它们的组合是发展可行的大型氢绿细胞工厂的最有希望的途径之一。在这里,我们提供了当前知识和技术差距的概述,这些差距遏制了光生物学氢化酶驱动的氢产生的发展,并总结了有关非本性氢化酶在蓝细菌和绿色藻类中表达的最新进展和未来前景,并强调了[FEFE]氢化酶。
摘要:水产养殖产量处于创纪录的水平,估计在未来几年中会增加。但是,这种产量可能会受到病毒,细菌和寄生虫产生的传染病的负面影响,从而导致鱼类死亡率和经济损失。抗菌肽(AMP)是很小的植物,可能有望替代抗生素,因为它们是动物对各种病原体的第一道防线,并且没有负面影响。它们还显示了其他抗氧化剂或免疫调节功能等其他功能,这使它们成为水产养殖的强大替代品。此外,AMP在天然来源中高度可用,并且已经用于牲畜农业和食品行业。光合海洋生物可以在各种环境条件下以及在极具竞争性的环境下生存,这要归功于它们的柔性代谢。出于这个原因,这些生物代表了一种强大的生物活性分子来源,即包括AMP在内的营养素和药物。因此,在这项研究中,我们回顾了来自光合海洋生物体的AMP的当前知识,并分析了它们是否适合在水产养殖中使用。
碳捕获和生化存储是光合产量和生产力的主要驱动因素。为了阐明控制碳分配的机制,我们使用微藻作为简化的植物模型设计了一种光合光响应测试系统,用于遗传和代谢碳同化跟踪。在相同的picochlorum celeri物种的两个变体中,TG1和TG2阐明了代谢瓶颈部的两个变体之间的高光响应性光生理学和碳利用动力学的系统生物学映射,并使用机构13 C-Elfooxomics进行了中间体的传输速率。同时全局基因表达动力学显示,有73%的注释基因在一小时内响应,阐明了与植物中CCA1/LHY时钟基因密切相关的单数,二元响应的转录因子,TG2中表达有显着变化。表达TG2 CCA1/LHY基因的转基因P. celeri TG1细胞显示出15%的生长速率和25%的储存碳水化合物含量增加,从而支持单个转录因子的协调调节功能。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年11月4日发布。 https://doi.org/10.1101/2021.11.11.04.467239 doi:Biorxiv Preprint
摘要:中粒细胞和蓝细菌具有广泛的生物技术应用。然而,对生物活性分子的工业需求和这些分子的冗余需求导致需要增强生产和发现专门代谢物的新方法。共培养是作为解决这些挑战的一种有希望的方法。在这种情况下,这项工作旨在描述涉及中性和极端光合微生物的共培养方法的最新技术,并讨论这种方法的优势,挑战和局限性。共培养被定义为一种生态学驱动的方法,其中涉及蓝细菌和微观的各种共生相互作用可用于探索新的化合物和增强的产生。通过基于共培养的研究支持该想法,关于新的生物活性代谢物表达和增加产量的有希望的结果。此外,光合微生物在极端环境中壮成长的代谢多样性和进化适应可以通过允许实施这些微生物来提高共培养的效率。然而,生态相互作用的复杂性以及缺乏共培养方案的标准化是其成功和科学验证的障碍。使用 - 组和基因工程进行共生互动的进一步研究,以及为了克服这些局限性的共生设计和共同培养的预测实验设计。
摘要:考虑到令人担忧的水资源短缺问题,必须采用更高效的废水处理技术。废水可以通过传统的生物过程处理,去除病原体、颗粒和可溶性有机化合物以及其他成分。然而,处理厂的二级废水可能仍然含有有毒元素或高浓度的无机营养物(主要是氮和磷),这使得光合微生物在水体中生长,导致水体富营养化。在这种情况下,在污水处理产生的二级废水中培养光合微生物可以去除这些废水中的营养物,降低水体富营养化的可能性。此外,在这种三级废水处理中产生的微藻生物质可以通过不同的方法收获,并有可能用于不同的应用,例如肥料和生物燃料。
