摘要:尼日利亚的功率基础设施以污染基于化石的电力系统污染。该国目前遭受急性电力短缺,使近40%的网格客户获得了低于其需求的不可靠和不一致的电力。太阳资源在该国的广泛潜力比许多欧洲国家都有巨大的潜力。尽管如此,尼日利亚的太阳能光伏(PV)安装容量可能会更好。本文介绍了与网格连接的10 kW,100 kW和1 MW PV系统的技术经济,环境和风险分析,用于尼日利亚阿布贾的三个客户段。发现,1 MW网格绑定的PV系统非常可行,以不到0.01 $/kWh的电力出口速率,对于固定轴系统而言,固定轴系统的总初始成本(TIC)不超过2000 $/kW,而两轴系统则为2600 $/kWH或更低。10 kW和100 kW的光伏系统仅在财务上可行,并带有财政激励措施。但是,对于固定的10 kW,2轴10 kW,固定的100 kW和两轴100 kW的系统,它们的最低额外费用为0.294、0.297、0.223、0.223、0.223和0.214 $/kWh,它们变得有利可图。
该项目已获得欧盟“地平线 2020”研究与创新计划的资助,资助协议编号为 101037141。本材料仅反映该联盟的观点,欧盟委员会对其中信息的任何使用不承担任何责任。
新闻办公室:电话 +39 0252031875 – +39 0659822030 股东免费电话号码(意大利境内):800940924 股东免费电话号码(国外):+ 80011223456 总机:+39.0659821 ufficio.stampa@eni.com segreteriasocietaria.azionisti@eni.com investor.relations@eni.com 网站:www.eni.com
摘要 为降低电力的净现值,针对配备电动汽车 (EV) 的家庭,开发了一种实用的并网屋顶太阳能光伏 (PV) 和电池储能 (BES) 优化定型模型。通过创建新的基于规则的家庭能源管理系统,研究了两种系统配置:(1) PV - EV 和 (2) PV - BES - EV,以实现 PV 和 BES 的优化定型。使用随机函数结合电动汽车可用性(到达和离开时间)及其到家时的初始充电状态的不确定性。研究了市场上流行的电动汽车模型对客户的最佳定型和电力成本的影响。根据电网约束、零售价格和上网电价的变化,采用了几种敏感性分析。根据日照、温度和负载的变化提供了不确定性分析,以验证所开发模型的最佳结果。为典型并网家庭中的住宅客户提供了实用指南,帮助他们在考虑 EV 模型的情况下选择最佳 PV 或 PV-BES 系统容量。虽然所提出的优化模型是通用的,可以用于各种案例研究,但澳大利亚案例研究使用了太阳辐射、温度、家庭负荷、电价的实际年度数据以及 PV 和 BES 市场数据。开发的最佳规模模型也适用于澳大利亚不同州的住宅家庭。
目前,有许多有关基础站能源节能和排放减少的研究,主要涵盖了两个方面。一方面,考虑到基站本身,基本站睡眠机构用于提高系统的能源效率[4-6]。另一方面,考虑到能源使用,提出了绿色基站系统[7]的概念,该概念使用可再生能源或混合动力为基站系统提供能源,从而使基站和智能电网之间的能量流[8-11]。对储能单元的容量的合理配置可以提高基站电源的稳定性和安全性[12],并降低微电网系统的经济成本[13]。许多研究人员已经对光学存储微电网容量的最佳配置进行了广泛的研究。根据光伏存储系统联合操作的特征,研究[14]优化了以最低初始投资为目标的不同类型的电池的配置。在[15]中,对于分布网络中的多个光伏存储微电网,使用两层最佳配置方法来确定每个光伏存储微电网的经济调度方案,并优化光伏存储的能力。
本文旨在为独立混合光伏-电池系统提出一种基于平坦度控制方法的能量管理策略 (EMS)。所提出方法的目标是利用非线性平坦度理论开发一种高效的 EMS,以提供稳定的直流母线电压以及太阳能电池阵列与电池之间的最优功率共享过程。所建议的 EMS 负责平衡 PV 系统和电池的功率参考,同时保持直流母线电压稳定并在其参考值处运行。为了最大化 PV 的功率,使用了基于可变步长 (VSSP 和 P&O) 的扰动观察最大功率点跟踪 (MPPT) 方法和 DC/DC 升压转换器。此外,还开发了 DC/DC 双向转换器来控制电池的充电和放电过程。此外,通过在基于 MATLAB ® /Simulink 的仿真环境中对所提出的 EMS 策略进行验证,使其适应各种场景,包括不同程度的辐射和负载突然变化的场景。结果表明,所提出的 EMS 方法能够保持总线电压稳定,即使负载或太阳辐射发生变化。此外,通过最大限度地减少总线电压尖峰,EMS 技术还确保了出色的电能质量,从而有助于延长电池的使用寿命和提高电池的效率。最后,与各种负载条件下的传统负载跟踪 (LF) 策略相比,所提出的策略具有最小的总线电压过冲率和更高的跟踪效率。
随着太阳能光伏收集能源系统越来越重要,每天可再生能源的范围,提高太阳能光伏模块的效率并降低模块的成本正在接受PV模块制造商的更多关注。PV模块互连丝带的设计是开发PV模块效率并提高模块可靠性的主要重点之一。在过去的十年中,已经引入了PV模块互连功能区的新设计,但是,仍然需要选择其配置和几何形状,以实现更高的可靠性,而不会降低PV模块的效率。的确,仅使用较宽的互连丝带(提供更多的关节长度)可能会提高模块的可靠性,但由于更大的阴影效果,它直接降低了模块的效率。本研究提供了确定PV模块互连长期可靠性的最佳设计的结果。在三个主要的PV模块互连设计中,包括常规色带(CR),捕获色带(LCR)和多鲍斯巴(MBB)互连,以循环数量与蠕变疲劳失败的术语进行比较。本研究使用FEM模拟和蠕变效率可靠性公式来找到主要几何参数对不同PV模块功能区互连设计失败的影响。的发现表明,与LCR和CR互连相比,MBB互连具有高达15%的蠕变效率寿命。
作为一种新型的浮动法规资源,储能系统不仅可以平滑新的能源生成的功能,还可以跟踪生成计划与新的能源能力相结合,以增强新的能源系统运营的可靠性。近年来,为新的网格能源电源站安装储能已成为中国的基本要求,但是从新能源电源站的角度来看,仍然缺乏相关的评估策略和技术评估,对存储系统的规模确定。因此,本文从总结了新能源电源站的能源存储的作用和配置方法,然后提出了多维评估指标,包括太阳能削减速度,预测准确性和经济学,这些指标被视为在PV电力机中确保储能系统的优化目标。最后,以比利时的4000 MWPV工厂的运营数据开发了六种具有不同比率储能能力比例的场景,并进一步探讨了储能尺寸对太阳能削减速度,PV降低功率和经济性的影响。本文提出的方法有效地评估了使用年度运营数据的大型PV电站的性能评估,并实现了对PV电站的最佳尺寸确定储能系统的自动分析,并验证了中国某些地区PV电站的原理的合理性。
摘要:本研究评估了超级电容器作为储能单元在微电网可再生能源系统中有效提高能源自耗的效果。本研究评估了两种场景:(场景 A)光伏和储能系统;(场景 B)光伏、储能和风力涡轮机系统。系统分析使用天气和负载的实验数据进行,时间精度为 1 分钟。电力负荷曲线的日平均值为 5.0 kWh/天,最大峰值为 4.5 kW,用于计算电力负荷曲线的年能耗为 1859 kWh/年。研究表明,仅使用可再生能源为超级电容器充电可以大大提高能源的自耗。仅使用六个超级电容器(300 F – 2.7 V/单位),情景 (A) 中的年自耗百分比从 37.01% 增加到 46.65%,自给率百分比从 27.54% 增加到 41.69%,情景 (B) 中的年自耗百分比从 38.52% 增加到 48.75%,能源自给率百分比从 33.50% 增加到 49.87%。研究表明,通过加入微型、快速响应的能源存储,与没有能源存储的系统相比,所研究负载的年平均能源自耗有所增加,使其成为电池的有吸引力的候选者。