基于可再生能源的 KY 升压转换器和七电平逆变器系统综述 Gopika BS 1* 和 Rajeshwari 2 1 印度泰米尔纳德邦哥印拜陀 Dhanalakshmi Srinivasan 工程学院电气与电子工程系助理教授。 2 印度卡纳塔克邦 Chintamani 政府理工学院电气与电子系高级讲师。 通讯作者(Gopika BS)电子邮件:gopikabs@dsce.ac.in * DOI:https://doi.org/10.46431/MEJAST.2025.8103 版权所有 © 2025 Gopika BS 和 Rajeshwari。这是一篇开放获取的文章,根据知识共享署名许可条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是注明原作者和出处。文章收稿日期:2024 年 11 月 11 日 文章接受日期:2025 年 1 月 18 日 文章发表日期:2025 年 1 月 25 日
摘要 — 随着智能系统的采用,人工神经网络 (ANN) 已变得无处不在。传统的 ANN 实现能耗高,限制了它们在嵌入式和移动应用中的使用。脉冲神经网络 (SNN) 通过二进制脉冲随时间分布信息来模拟生物神经网络的动态。神经形态硬件的出现充分利用了 SNN 的特性,例如异步处理和高激活稀疏性。因此,SNN 最近引起了机器学习社区的关注,成为低功耗应用的 ANN 的受大脑启发的替代品。然而,信息的离散表示使得通过基于反向传播的技术训练 SNN 具有挑战性。在这篇综述中,我们回顾了针对深度学习应用(例如图像处理)的深度 SNN 的训练策略。我们从基于从 ANN 到 SNN 的转换的方法开始,并将它们与基于反向传播的技术进行比较。我们提出了一种新的脉冲反向传播算法分类法,将其分为三类,即:空间方法、时空方法和单脉冲方法。此外,我们还分析了提高准确性、延迟和稀疏性的不同策略,例如正则化方法、训练混合和调整特定于 SNN 神经元模型的参数。我们重点介绍了输入编码、网络架构和训练策略对准确性-延迟权衡的影响。最后,鉴于准确、高效的 SNN 解决方案仍面临挑战,我们强调了联合硬件和软件共同开发的重要性。
1美国威斯康星大学麦迪逊分校生物医学工程系,美国威斯康星州53705,美国2威斯康星大学麦迪逊分校,威斯康星州麦迪逊大学,威斯康星州53705,美国3美国神经科学系,医学院,医学和公共卫生学院威斯康星州麦迪逊,威斯康星州麦迪逊市,美国威斯康星州53705,美国5这些作者同样贡献了6个铅接触 *通信:Xinyu Zhao(Waisman中心和威斯康星大学麦迪逊大学医学与公共卫生学院神经科学系,麦迪逊大学,麦迪逊大学,麦迪逊大学,麦迪逊,麦迪逊大学,美国西澳州53705,USA; AVIAD HAI(威斯康星大学麦迪逊分校工程学院生物医学工程系,威斯康星州麦迪逊,美国53706,美国;电话:(608)890-3411;电子邮件:ahai@wisc.edu);或阿里·罗森伯格(Ari Rosenberg)(威斯康星大学麦迪逊分校医学与公共卫生学院神经科学系,美国威斯康星州麦迪逊市53705;电话:(608)265-5782;电子邮件:ari.rosenberg@wisc.edu)
摘要 - 基于表面肌电图(SEMG)的分析的手动运动的准确建模为开发复杂的假体设备和人机界面的开发提供了令人兴奋的机会,从离散的手势识别转向连续运动跟踪。在这项研究中,我们基于轻量级尖峰神经网络(SNN)和在晶格ICE40-ultraplus FPGA上实施了两种实时SEMG加工的解决方案,特别适用于低功率应用。我们首先评估离散手势识别任务中的性能,考虑到参考Ninapro DB5数据集,并在十二个不同的固定手势的分类中占83.17%的准确性。我们还考虑了连续填充力建模的更具挑战性的问题,在独立的扩展和收缩练习中引用了用于填充跟踪的Hyser数据集。评估表明,高达0.875的相关性与地面真正的力。我们的系统利用了SNN的固有效率,并在活动模式下消散11.31 MW,以进行手势识别分类的44.6 µJ,用于强制建模推理的手势识别分类和1.19 µJ。考虑动态功率消费管理和引入空闲时期,对于这些任务,平均功率下降至1.84兆瓦和3.69兆瓦。
EEG中的跨主题变异性降低了当前深度学习模型的表现,限制了脑机构界面(BCI)的发展。本文提出了ISAM-MTL,这是一种基于可识别峰值的多任务学习(MTL)EEG分类模型(IS)代表和关联内存(AM)网络。所提出的模型将每个受试者的脑电图分类视为一项独立任务,并利用跨主题数据训练来促进跨受试者的特征共享。ISAM-MTL由一个尖峰功能提取器组成,该提取器可在受试者和特定主题的双向关联内存网络中掌握共享特征,该功能受HEBBIAN学习训练,以实现高效且快速的主体内部EEG分类。iSAM-MTL将学习的尖峰神经代表与双向缔合记忆进行了交叉主体EEG分类。模型标记引导的变异推断对可识别的尖峰表示,增强了分类精度。在两个BCI竞争数据集上的实验结果表明,ISAM-MTL提高了跨主体EEG分类的平均准确性,同时降低受试者之间的性能差异。该模型进一步表现出少数射击学习和可识别的神经活动的特征,从而实现了BCI系统的快速且可解释的核心。
摘要 - Spike Corting是从细胞外记录中解码大规模神经活动的关键过程。神经探针的进步有助于记录大量神经元,并增加了通道计数的增加,从而导致较高的数据量并挑战了当前的On-Chip Spike Sorters。本文介绍了L-Sort,这是一种新颖的芯片尖峰分类解决方案,其中中位数尖峰检测和基于本地化的聚类。通过组合中位数近似值和提出的增量中值计算方案,我们的检测模块可实现记忆消耗的减少。此外,基于定位的聚类利用几何特征而不是形态特征,从而消除了在特征提取过程中包含尖峰波形的内存耗费缓冲区。使用Neuropixels数据集进行评估表明,L-SORT可以通过减少硬件资源消耗来实现竞争性排序精度。对FPGA和ASIC(180 nm技术)的实现,与最先进的设计相比,面积和功率效率显着提高,同时保持了可比的精度。,如果与使用相同数据集评估的最新设计相比,我们的设计将大约×10面积和功率效率达到相似的精度。因此,L-SORT是可植入设备中实时高通道计数神经处理的有前途的解决方案。
注意:• 这些建议的间隔基于免疫学原理和专家意见,并且可能会随着有关 COVID-19、值得关注的变体 (VOC) 和 COVID-19 疫苗的证据出现而发生变化。在考虑是否按照本表列出的建议间隔接种疫苗时,还应考虑暴露的生物和社会风险因素(例如,当地流行病学、VOC 的流通、生活环境)以及严重疾病的风险。这些间隔仅供参考,建议临床判断。个人可以根据要求在少于建议的感染间隔时间内接种疫苗。• 对于之前未接种过任何剂量的个体,他们可以在 COVID-19 急性症状消退且不再具有传染性后接种第一剂,或者他们可以遵循这些建议的间隔(MIS-C 患者除外,他们应等待至少 90 天)。
大脑的连通性是局部密集且全球稀疏的,形成了一个小世界图,这是各种物种进化中普遍存在的原理,为有效的信息路由提供了通用解决方案。但是,当前的人工神经网络电路架构并不能完全包含小世界的神经网络模型。在这里,我们介绍了神经形态的镶嵌:一种非冯·诺伊曼收缩期架构,采用分布式备忘录来进行内存计算和内存路由,有效地实现了用于尖峰神经网络(SNNS)的小世界图形拓扑。我们使用具有130 nm CMOS技术的集成的备忘录,设计,制造和实验证明了马赛克的构建块。我们表明,由于在连接性中执行局部性,马赛克的路由效率至少比其他SNN硬件平台高一个数量级。这是Mosaic在各种边缘基准中实现竞争精度的同时。Mosaic为基于分布式尖峰的计算和内存路由的边缘系统提供了可扩展的方法。
由于它们在带宽,功率效率(尤其是速度)方面具有显着优势,因此已经成为传统半导体设备的有趣替代品。最近,首先证明了具有激发行为的晶体晶体纳米剂。根据泵送强度,它们在纳秒时间尺度上以各个间隔发出短的光学脉冲(尖峰)。在这项理论工作中,我们展示了如何通过从学习的概率分布中采样来将这种光子尖峰神经元的网络用于贝叶斯推断。我们提供了从传统采样网络(例如Boltzmann机器)到光子尖峰网络的翻译规则的详细推导,并在一系列具有一系列的任务中演示了它们的功能。最后,我们提供了处理速度和功耗的估计,我们预计与当前最新神经形态系统相比,我们预计几个数量级。
4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国4美国加利福尼亚州斯坦福大学的神经外科系,5神经科学计划,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana-Champaign,伊利诺伊州Urbana,伊利诺伊州Urbana,美国伊利诺伊州伊利诺伊州乌尔巴纳大学的人工智能创新中心,6,伊利诺伊州工程学院,伊利诺伊州,伊利诺伊州乌里诺斯大学,伊利诺伊州乌里诺斯·塞拉纳,工程学院。伊利诺伊州Urbana-Champaign,伊利诺伊州乌尔巴纳大学,伊利诺伊州乌尔巴纳大学工程学,机械科学与工程学,美国伊利诺伊州乌尔巴纳 - 欧巴纳大学分子与综合生理学系8伊利诺伊州乌尔巴纳,美国