1 Laboratory of the atmosphere and cyclones (Lacy), UMR 8105 CNRS, University of Reunion, Météo-France, Saint-Denis de la Réunion, 97400, France 2 Commsenslab-Upc, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain 3 Cooperative Institute for Research in Environmental Sciences, University of科罗拉多·博尔德(Colorado Boulder),科罗拉多州博尔德(Colorado Boulder),美国40309,美国4国家海洋和大气管理化学科学实验室,博尔德,科罗拉多州,美国80305,美国5号,巴黎大学,巴黎大学克雷特尔大学大气实验室,巴黎大学,学院意大利卡塔尼亚的Osservatorio Etneo 7 Universe Sciences-Réunion(OSU-R)观测站,Saint-Denis,97400,法国,现在是:NOT:NILU,KJELLER,KJELLER,KJELLER,挪威
飞机。研究应证明在任何情况下导弹绝对不会对飞机造成任何物理干扰。确保热发射导弹的火箭发动机羽流干扰不会对飞机的结构、机载电子元件和敏感部件产生任何重大影响也很重要。羽流进入飞机进气口是一个危及飞机安全的关键问题。因此,热发射导弹羽流路径的预测是分离动力学研究的重要组成部分。在目前的研究中,采用基于粒子跟踪方法的工程方法来预测羽流路径。此外,使用反向粒子跟踪方法对该方法进行了修改,使其更加高效。该方法用于预测空对空导弹的羽流路径,结果表明该方法能够以最少的计算要求给出相当准确的羽流路径。
致谢:23团队要感谢莎拉·沃尔登(Sarah Walden),Chip Bollendonk,Alex Kelling,Julie Steinbrenner,Patrick Maguire,Victoria Lanaghan,Keith Malang,Derek Westmoreland,Derek Westmoreland和Design Center Colorado的工作人员以及Colorge和Idea Forge的支持和反馈。
L Direct distance between the trap and the starting point of hydrocarbon migration below the seal l Power of power-law shape of stringer M Mass of expulsed gas m, n Powers in the self-similar solution p Pressure p H Pressure of the reference point on z-axis Q Gas injection rate R Equilibrium gas concentration in water r Defined power as a function of l s cw Connate water saturation s gr Residual gas saturation t Time T Injection period during the pulse injection t D无量纲的时间U气速/通量U气体速率w水速度的模块W水辅助气体速度X沿密封X D无量纲坐标沿密封无量音坐标沿密封轴与水平轴之间的密封α角βββββββββββ型ββ的电力范围之间的量在水和气体之间
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
空射导弹的分离动力学研究是确保发射飞机安全的首要任务。研究应证明在任何情况下导弹对飞机绝对不存在任何物理干扰。确保热发射导弹的火箭发动机羽流干扰不会对飞机的结构、机载电子元件和敏感部件产生任何重大影响也很重要。羽流进入飞机进气口是一个危及飞机安全的关键问题。因此,热发射导弹羽流路径的预测是分离动力学研究的重要组成部分。在目前的研究中,采用基于粒子跟踪方法的工程方法来预测羽流路径。此外,使用反向粒子跟踪方法对该方法进行了修改,使其更加高效。该方法用于预测空对空导弹的羽流路径,结果表明该方法能够以最少的计算要求给出相当准确的羽流路径。
海面温度升高导致更频繁,强烈的珊瑚漂白事件,威胁到全球珊瑚礁的长期生存。海洋云亮(MCB)是一种建议的干预措施,可以在全球或区域应用于冷却海面温度并降低珊瑚漂白的风险和严重程度。该技术的有效性和后勤可行性取决于从海水喷雾剂在海面的海水喷雾操作中排放后,将海盐气溶胶的哪一部分纳入云中。在这里,我们回顾了有关MCB海盐气溶胶从海洋边界层内的点源分散的文献。我们将考虑因素集中在过程,机制和当前预测羽流的水平和垂直演化的能力上,从表面水平的产生到其顺风分散并混合到云高度。总的来说,我们发现自从MCB概念首次提出以来,已经有八项研究研究了MCB的这一方面,这对于向工程系统设计,海洋物流和评估MCB的整体潜在有效性至关重要。迄今为止,只有一项研究已经使用经验实验验证了气溶胶分散剂的建模,并且只有少数研究考虑了与水滴蒸发冷却相关的负浮力,以及由于凝结和沉积而导致的颗粒清除。将来研究的优先领域被确定为MCB羽流的遥远分散,以及对MCB气溶胶部分达到云基碱的估计。
摘要:电力空间推进是一项在不断增加的航天器上采用的技术。虽然其应用领域的当前重点是电信卫星和太空探索任务,但现在正在讨论一些新想法,这些想法走得更远,应用推进器羽流粒子流将动量传递给目标,例如空间碎片物体甚至小行星。在这些潜在场景中,推进器光束撞击远处的物体,随后改变它们的飞行路径。到目前为止尚未系统研究的一个方面是推进光束中的带电粒子与太空中存在的磁场的相互作用。这种相互作用可能导致粒子流偏转,从而影响瞄准策略。在本文中,介绍了与电力推进推进器羽流和磁场相互作用相关的基本考虑因素。针对这些问题,德国航空航天中心在哥廷根的电推进器高真空羽流测试设施(STG-ET)进行了实验,利用栅状离子推进器、RIT10/37 和亥姆霍兹线圈产生不同场强的磁场。可以检测到由类似地球磁场强度的磁场引起的 RIT 离子束的束偏转。
简介电池储能系统(BES)故障可能会演变为热失控,并随着相关的细胞破裂和脱落而发展。这具有随后的燃烧羽流燃烧点火的可能性。是否有火焰,BESS失败会散发出气体和颗粒到大气中,这些气体可能会顺风移动,并可能通过化学反应或物理过程(例如,在地面或其他表面沉积)进化。此进化也可以称为“命运和跨端口”。所有者和运营商必须实施安全缓解技术和操作方法,以减少故障风险,并执行危险评估和社区风险评估评估,以了解潜在的现场或下风影响的范围。这包括对空气羽流演化的模拟建模。1,2
作为该项目的一部分,CARB 于 2020 年与亚利桑那大学合作,并于 2021 年和 2023 年与 Carbon Mapper 合作,在加州部分地区进行羽流测绘飞行。在这些飞行中,共检测到 502 个甲烷羽流,与来自两个主要行业的 75 个不同运营商建立了 245 份联系:垃圾填埋场和石油和天然气设施。还检测到了来自其他行业的少量羽流,包括奶牛场、堆肥作业、厌氧消化器、炼油厂和热电联产厂,但这些羽流不在本报告的讨论范围内。CARB 工作人员确定了每个甲烷羽流源头的基础设施所有者,并通过 245 份独特的“事件报告”直接与垃圾填埋场和石油和天然气运营商分享了调查结果。运营商被要求通过实地调查(如有必要)确定排放的确切来源,修复排放源(如果可能),并向 CARB 报告他们的发现。运营商对这些事件报告的回应率为 94%。石油和天然气行业运营商通常会在一两天内采取行动,并在两周内对 CARB 做出回应。垃圾填埋场运营商通常会在一两周内采取行动,但许多垃圾填埋场运营商反应迟缓,直到几个月后才分享他们的发现。根据运营商的回应,40% 的事件被归类为“A 类”,这意味着运营商在没有收到 CARB 通知的情况下不知道排放情况,例如部件损坏或故障。12% 的事件报告被归类为“B 类”排放,这意味着检测到的甲烷羽流来自符合监管要求的正常运行产生的排放。27% 的事件被归类为“C 类”,这意味着检测到的羽流与短期维护或施工期间发生的排放有关。其余事件报告中的排放源是运营商在进行现场检查后未发现的(15%)或没有回应(6%)。在所有“A 类”排放情况下,运营商能够停止或修复相关部件并减轻排放源。因此,在约 40% 的已确定案例中,该技术直接支持了甲烷排放的减缓。
