Colossal Biosciences是一家生物工程公司,其任务是带回诸如Wooly Mammoth之类的灭绝动物。先前的研究表明,有可能从现代亲密亲戚(例如大象)中进行工程细胞进入IPSC,从理论上讲,该细胞可以进一步设计以用古代物种的胚胎替换基因,然后将其植入现代大象的子宫中,并在现代大象中,然后将其发展成所需的动物,即羊毛乳头哺乳动物。
在过去的二十年中,全基因组关联研究已经确定了数千个与人类特征和疾病相关的基因组位点(10)。临床和分子表型分析以及功能分析的同步进展,以及疾病新生物标志物的发现,已经产生了大量表型数据,这些数据具有极大的潜力来改善我们对病理生理过程的理解。然而,我们在理解疾病遗传病因方面的进展仍然异常缓慢。部分原因是大多数与疾病相关的遗传变异都是非编码的。非编码变异被认为不会影响蛋白质功能,而是影响基因调控;也就是说,它们决定基因在何处、何时以及在何种程度上表达。非编码变异的影响可能通过多种分子机制延续,包括可变剪接、染色质可及性和组蛋白修饰。因此,它们与疾病结果的关系尚不清楚。很明显的是,基因失调在疾病中起着核心作用。然而,为了了解疾病的发展和如何治疗它们,我们必须使用适当的工具——模型系统,使我们能够研究与疾病最相关的组织、细胞类型和状态中的基因调控。
本预印本的版权所有者(此版本于 2022 年 5 月 24 日发布。;https://doi.org/10.1101/2022.05.24.493220 doi: bioRxiv preprint
调节性SMAD转录因子(R-SMADS),特别是SMAD 1,5和8。[2]在其磷酸化时,R-SMADS与共同的共肌(SMAD 4)寡聚并转移到核,以调节BMP靶基因的表达。[2b,3] BMP-SMAD信号传导的作用已充分记录在胚胎发生中,尤其是心脏中胚层的形成。[4]在发育中的胚胎中,BMP是从胚外中胚层分泌的,产生形态学的BMP梯度,在浓度,空间和时间下,该梯度指导祖细胞细胞向心脏中胚层的分化。[5]基于胚胎心脏发展的观察结果,在小鼠和人PSC模型中已经开发了采用BMP受体激活的定向分化方案。[4C,6]与这些观察结果一致,我们最近发现,激活蛋白A,BMP4,CHIR99021和FGF2(ABCF-求解)支持心脏中介体形成,包括所有测试的HPSC系(包括胚胎和诱导的Pluripotent semorts),以及在所有测试的HPSC系中,以及随着诱导的PLURIPOTENT的应用 - 心肌。[7]
摘要:由于人类与实验动物之间的物种差异,对人类心脏病的病理生理学和细胞对药物的反应的全面了解受到限制。此外,人类心肌细胞 (CM) 的分离很复杂,因为通过活检获得的细胞不会增殖,从而无法为体外临床前研究提供足够数量的细胞。有趣的是,人类诱导多能干细胞 (hiPSC) 的发现开辟了在培养皿中生成和研究心脏病的可能性。重编程和基因组编辑技术相结合可在体外生成广泛的人类心脏病,为阐明基因功能和机制提供了绝佳机会。然而,为了挖掘 hiPSC 衍生的 CM 在药物测试和研究成人心脏病方面的潜在应用,需要对成熟和代谢特征进行全面的功能表征。在本综述中,我们重点介绍了将体细胞重新编程为 hiPSC 的方法,以及克服 hiPSC 衍生 CM 不成熟的解决方案,以模拟成人 CM 的结构和生理特性,从而准确模拟疾病并测试药物安全性。最后,我们讨论了如何改进 CM 的培养、分化和纯化,以获得足够数量的所需类型的 hiPSC 衍生 CM,用于疾病建模和药物开发平台。
摘要:干细胞,尤其是人IPSC,构成了组织工程的强大工具,尤其是通过球形和器官模型。很好地描述了干细胞对其直接微环境的粘弹性特性的敏感性,但干细胞分化仍然取决于生化因素。我们的目的是研究HIPSC球体直接环境在命运中的粘弹性特性的作用。为了确保仅由机械相互作用驱动细胞生长,可在无分化因子培养基中使用具有显着不同粘弹性特性的可生物固定藻酸盐 - 凝集素水凝胶。开发了不同浓度的藻酸盐 - 凝集素水凝胶,以提供具有显着不同机械性能的3D环境,范围从1到100 kPa,同时允许可打印。通过聚集(= 100 µm,n> 1×10 4)制备来自两个不同细胞系的HIPSC球体,在不同的水凝胶中包括并培养14天。虽然密集水凝胶中的球体表现出有限的生长,而不论配方如何,但用液态液乳液法制备的多孔水凝胶显示出球体形态的显着变化和随着水凝胶机械性能的函数的显着变化。横向培养物(相邻球体含有藻酸盐 - 凝集素水凝胶)清楚地确定了每个水凝胶环境对hipsc球体行为的单独影响。这项研究是第一个证明机械调制的微环境会导致不同的HIPSC球体行为而不会影响其他因素。它允许人们设想多个公式的组合来创建一个复杂的对象,其中HIPSC的命运将由其直接微环境独立控制。
黄斑疾病是西方世界视力丧失的主要原因之一。仅在英国,将近150万人患有这些毁灭性疾病,这些疾病主要影响黄斑,这是视网膜中的一个造成详细中央愿景的地区。在许多患者中,可归因于衰老或遗传突变的细胞变化与视网膜色素上皮(RPE)有关,这是一种维持和支持光敏感视网膜的单层细胞。在没有功能性RPE的情况下,视网膜被损坏并视力恶化。目前,这些疾病没有治疗方法。在过去的二十年中,诱导的多能干细胞彻底改变了我们对视网膜疾病的研究,使研究人员能够在菜肴中产生以前无法接近的RPE细胞。从患者中重新创建这些细胞的能力已提供了新的模型系统,以了解疾病背后的机制,并加速新疗法以治疗视力丧失。
BRCA2 基因突变与散发性和家族性癌症有关,可导致基因组不稳定并使癌细胞对聚(ADP-核糖)聚合酶 (PARP) 抑制敏感。本文表明,删除一个 BRCA2 拷贝的人类多能干细胞 (hPSC) 可用于注释此基因的变体并测试其对 PARP 抑制的敏感性。通过使用 Cas9 编辑局部单倍体 hPSC 和从其分化的成纤维细胞中的功能性 BRCA2 等位基因,我们鉴定了该基因中的必需区域以识别允许突变和功能丧失突变。我们还使用 Cas9 直接测试单个氨基酸的功能,包括由意义不明确的临床 BRCA2 变体编码的氨基酸,并鉴定了对用作 BRCA2 缺陷型癌症治疗标准的 PARP 抑制剂敏感的等位基因。局部单倍体人类多能干细胞可以促进基因的详细结构功能分析以及临床观察到的突变的快速功能评估。
大脑可以说是人体最复杂的部分形式和功能。对调节其正常生理和病理生理的分子机制尚不清楚。缺乏知识在很大程度上源于人脑的无法访问的本质以及动物模型的局限性。因此,脑部疾病很难理解,甚至更难治疗。产生人类多能干细胞(HPSC)衍生的二维(2D)和3维(3D)神经培养的最新进展提供了一个可访问的系统来模拟人脑。基因编辑技术(例如CRISPR/CAS9)的突破将HPSC进一步提升到了可遗传障碍的实验系统中。强大的遗传筛选,以前保留用于模型生物和转化的细胞系,现在可以在人神经细胞中进行。结合了快速扩展的单细胞基因组学工具包,这些技术进步最终创造了使用功能基因组学研究人脑前所未有的机会。本综述将总结在HPSCS衍生的2D神经培养物和3D脑器官中应用基于CRISPR的遗传筛查的目前进展。我们还将评估所涉及的关键技术,并讨论其相关的实验考虑和未来应用。
由于其无限的增殖潜力、整倍体状态以及向任何细胞类型分化的能力,人类多能干细胞 (hPSC)(无论是胚胎细胞还是诱导细胞)在疾病建模和生产临床应用细胞方面具有巨大潜力 [ 1 – 3 ]。尽管已经建立了来自患有各种疾病的患者的许多 hPSC 系,但是针对某些病理或罕见基因突变生成 hPSC 系仍然具有挑战性。此外,个体间的遗传异质性可能导致生物学变异,从而使系间比较困难,尤其是来自健康对照和患者的 hPSC 之间的比较 [ 4 , 5 ]。对 hPSC 进行遗传操作的能力为我们引入、修改或校正突变以及生成遗传匹配的同基因对照系提供了机会,从而建立明确的基因型-表型关联 [ 6 , 7 ]。近年来,基于位点特异性核酸酶(包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),尤其是成簇的规律间隔短回文重复序列 (CRISPR) 系统)的技术已使 hPSC 的基因组工程变得十分灵活 [8,9]。然而,由于 hPSC 的固有特性,包括相对较差的转染效率和转染后存活率低、难以分离克隆群、优先选择和扩增非整倍体克隆以及自发细胞分化,hPSC 工程仍然具有挑战性。为了缓解这些问题,已经描述了几种用于产生各种不同诱变事件的方案 [10-14]。尽管人们投入了大量精力来改进产生转基因 hPSC 的方法程序,但只有少数研究