多细胞动物的摘要需要polycomb组蛋白的表观遗传抑制。后者在多种亚基X es中组装,其中两种,poly comb r ePressiv e comple x 1(pr c1)和poly comb r e:re atressiv e comple x 2(prc2),起作用,以抑制k e y de v e v elopmental基因。ho w pr c1和pr c2识别特定基因仍然是一个悬而未决的问题。在这里,我们报告了数百个DNA元素的鉴定,这些DNA元素将规范PRC1绑定到人类发育基因。我们使用该术语系列来描述在某些基因组部位在某些基因组部位显着存在的过程,尽管该复合物不太可能直接与DNA相互作用。详细的分析表明,与PRC1束缚相关的序列特征与F a v我们的PR C2结合的序列特征不同。t hrought the Genome,两种序列的特征是不同比例混合的,以产生一系列的DNA元素,这些元素的范围从主要是prc1或prc2到能够束缚这两种复合物的元素。新兴图片类似于果蝇的多梳子响应元件(PRES)对polycomb络合物的范式靶向,但可塑性是较高的。
多梳抑制复合物 1 (PRC1) 强烈影响 3D 基因组组织,介导目标基因座的局部染色质压缩和聚集。几种 PRC1 亚基能够在体外通过液-液相分离形成生物分子凝聚物,并且在细胞中标记和过表达时也是如此。在这里,我们使用可以破坏液体状凝聚物的 1,6-己二醇来检查内源性 PRC1 生物分子凝聚物对 PRC1 结合基因座的局部和染色体范围聚集的作用。使用成像和染色质免疫沉淀,我们表明,PRC1 介导的目标基因组基因座(在不同长度范围内)的染色质压缩和聚集可以通过向小鼠胚胎干细胞中添加并随后去除 1,6-己二醇来可逆地破坏。多梳结构域和簇的解压缩和分散不能完全归因于 1,6-己二醇处理后染色质免疫沉淀检测到的 PRC1 占有率降低,因为添加 2,5-己二醇对结合有类似的影响,尽管这种酒精不会干扰 PRC1 介导的 3D 聚类,至少在亚兆碱基和兆碱基尺度上不会。这些结果表明 PRC1 分子之间的弱疏水相互作用可能在多梳介导的基因组组织中发挥作用。
在哺乳动物中,5-甲基胞嘧啶 (5mC) 和多梳抑制复合物 2 (PRC2) 沉积的组蛋白 3 赖氨酸 27 三甲基化 (H3K27me3) 在富含 CpG 的区域通常是互斥的。当小鼠胚胎干细胞退出幼稚多能状态时,5mC 大量增加,同时 H3K27me3 被限制在无 5mC 的富含 CpG 的区域。为了正式评估 5mC 如何塑造 H3K27me3 景观,我们在存在和不存在 DNA 甲基化机制的情况下分析了幼稚细胞和分化细胞的表观基因组。令人惊讶的是,我们发现 5mC 积累并不是限制大多数 H3K27me3 域所必需的。相反,这种不依赖 5mC 的 H3K27me3 限制是由 PRC2 拮抗剂 Ezhip(编码 EZH 抑制蛋白)的异常表达介导的。在 5mC 似乎真正取代 H3K27me3 的区域子集中,我们确定了 163 个候选基因,这些基因似乎需要 5mC 沉积和/或 H3K27me3 耗竭才能在分化细胞中激活。使用定点表观基因组编辑直接调节 5mC 水平,我们证明 5mC 沉积足以拮抗 H3K27me3 沉积并赋予单个候选基因基因激活。总之,我们系统地测量了重现早期胚胎动力学的系统中 5mC 和 H3K27me3 之间的拮抗相互作用。我们的结果表明 H3K27me3 抑制直接和间接地依赖于 5mC。我们的研究还表明 5mC 在基因激活中发挥着非规范作用,这不仅对正常发育很重要,而且对癌症进展也很重要,因为致癌细胞经常表现出 5mC 与 H3K27me3 的动态替换,反之亦然。
多发性骨髓瘤是一种异质性血液病,起源于骨髓,以恶性浆细胞单克隆扩增为特征。尽管已有新的治疗方法,但多发性骨髓瘤在临床上仍然具有挑战性。预后不良患者的一个共同特征是表观遗传沉默子EZH2(PRC2的催化亚基)活性增强。值得注意的是,PRC2的募集缺乏序列特异性,迄今为止,确定哪些基因组位点是PRC2介导沉默的分子机制仍不清楚。EZH2上存在一个长链非编码RNA (lncRNA)结合口袋,这表明lncRNA可能介导PRC2募集到特定的基因组区域。本文,我们结合RNA免疫沉淀测序、RNA测序和染色质免疫沉淀测序分析了人类多发性骨髓瘤原代细胞和细胞系,以鉴定EZH2的潜在lncRNA伴侣。我们发现lncRNA浆细胞瘤变异易位1 (PVT1) 直接与EZH2相互作用,并且在预后不良的患者中过表达。此外,预测为PVT1靶标的基因表现出H3K27me3富集,并与促凋亡和抑癌功能相关。事实上,PVT1抑制独立地促进了PRC2靶基因ZBTB7C、RNF144A和CCDC136的表达。总而言之,我们的研究表明,PVT1是PRC2介导的多发性骨髓瘤中抑癌基因和促凋亡基因沉默的相互作用伙伴,使其成为一个极具吸引力的潜在治疗靶点。
RING1和YY1结合蛋白(RYBP)主要被称为抑制器,是非典型的PolyComb抑制性复合物1(NCPRC1S)的核心成分。然而,还描述了RYBP的几种NCPRC1独立函数。我们先前报道说,RYBP是小鼠胚胎发育的本质,Rybp null突变体胚胎干细胞不能在体外形成收缩的心肌细胞(CMC)。我们还表明,在rybp -null突变CMC中未表达plagl1,通常在先天性心脏病(CHD)中突变的心脏转录因子。然而,未揭示RYBP如何调节PLAGL1表达的基本机制。在这里,我们证明了RYBP与NKX2-5合作以转录激活Plagl1基因的P1和P3启动子,并且这种激活是NCPRC1无关的。我们还表明,驻留在PLAGL1基因座中的两个非编码RNA也可以调节plagl1启动子。最后,PLAGL1能够激活TNNT2,这是转染HEK293细胞中CMC的收缩力很重要的基因。我们的研究表明,RYBP对plagl1的激活对于肌节开发和收缩力很重要,并表明RYBP通过其调节功能可能有助于CHD的发展。
多梳抑制复合物 1 和 2 (PRC1 和 2) 是发育基因可遗传抑制所必需的。导致哺乳动物多梳抑制表观遗传的顺式和反式因子尚不完全清楚。本文表明,在人类细胞中,异位诱导的最初活跃的发育基因的多梳沉默,而不是普遍表达的管家基因附近,在许多细胞分裂中是可遗传的。出乎意料的是,沉默在 PRC2 的胚胎外胚层发育 (EED) 亚基的 H3K27me3 结合口袋发生突变的细胞中是可遗传的,已知突变会破坏 H3K27me3 识别并导致 H3K27me3 丢失。这种遗传模式不太稳定,需要完整的 PRC2 和 PRC1 对 H2AK119ub1 的识别。我们的研究结果表明,Polycomb 沉默的维持对局部基因组环境敏感,并且可以由 PRC1 依赖的 H2AK119ub1 和 PRC2 介导,而不依赖于 H3K27me3 识别。
生物杂交微生物将生物执行器和传感器整合到合成机箱中,目的是提供下一代微型机器人技术的基础。主要挑战之一是开发具有一致行为的自组装系统,因此可以独立控制以执行复杂的任务。在这里,可以表明,使用轻驱动细菌作为螺旋桨,可以通过在不同的微型机构零件上不平衡光强度来指导3D打印的微型机器。设计了一个最佳反馈回路,其中中央计算机在每个微型机器上都会在其位置和方向上投射量身定制的光图案。以这种方式,可以通过一系列分布的检查点独立引导多个微型机器。通过利用自然光驱动的质子泵,这些生物杂交微型机器能够以如此高的效率从光中提取机械能,以至于这些系统原则上可以同时以几毫米的总光学功率同时控制这些系统。
注意:第 27 天 22Rv1 肿瘤切片中 H3K27me3 IHC 阳性细胞的定量图像分析。单因素方差分析,然后进行 Tukey 多重比较检验。****,p<0.0001;TGI 86%;肿瘤生长抑制 (TGI) = [1 - (TVtf - TVt0) / (TVcf - TVc0)] × 100%;用载体 (n=3) 或 ORIC-944 200 mpk QD (n=4) 处理的 22Rv1 异种移植瘤的 RNA 测序以评估来自转移性前列腺肿瘤的 87 基因多梳抑制特征 (Yu 等人,Cancer Res 2007);ORIC-944 与载体,t 检验:*,p<0.05。
注意:EZH1,增强Zeste同源物1。ezh2,增强Zeste同源物2。eed,胚胎外胚层的发育。suz12,zeste 12的抑制器。H3K27,赖氨酸的组蛋白H3 27。右 - 使用弹弓[Street等。Bolis等人的RNASEQ数据集上的 BMC基因组学(2018)。 nat Comm(2021),Yun等。 Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。BMC基因组学(2018)。nat Comm(2021),Yun等。Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。Oncotarget(2017),Liu等。nat Comm(2020)。PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。癌症Res(2007)]。癌症Res(2007)]。
Enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of polycomb repressive complex 2 (PRC2), is known to catalyze tri-methylation of histone H3 at lysine 27 (H3K27me3), leading to repression of the transcription of its target genes involved in cell cycle regulation, cell proliferation, cell differentiation, and tumor suppression 1) .已经提出表观遗传调节剂可以用作新的药物靶标,而EZH2是具有巨大治疗潜力的靶标之一。尽管PRC2的甲基转移酶活性主要由EZH2贡献,但EZH1在维持H3K27的三甲基化方面也起着补偿性作用,并直接与染色质结合,调节其凝结2)。这些强调,与单独的EZH2相比,阻止EZH1和EZH2的抗肿瘤效应可能更大。