本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅作为建议的起点使用。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于任何超出 Lubrizol Advanced Materials, Inc. 直接控制范围的材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和特定用途适用性的暗示保证。本文所含内容不应被视为许可、建议或诱因,在未经专利所有者许可的情况下实施任何专利发明。Lubrizol Advanced Materials, Inc. 是 Lubrizol Corporation 的全资子公司。© 版权所有 2009 Lubrizol Advanced Materials, Inc.
本文所包含的信息被认为是可靠的,但没有任何形式的陈述,担保或保证就其准确性,适用于特定申请或要获得的结果。这些信息通常基于实验室工作,使用小规模设备,不一定表明最终产品性能或可重复性。提出的配方可能没有进行稳定性测试,仅应作为建议的起点。由于在处理这些材料时商业上使用的方法,条件和设备的变化,因此没有对产品适用于披露的申请的适用性。全尺度测试和最终产品性能是用户的责任。Lubrizol Advanced Materials,Inc。不承担任何责任,并且客户对除Lubrizol Advanced Materade,Inc。的直接控制以外的任何材料的使用或处理都承担所有风险和责任。卖方不对明示或暗示的担保,包括但不限于对特定目的的适销性和适合性的隐含保证。本文中没有任何包含在未经专利所有者许可的情况下练习任何专利发明的授权,也不应将其视为诱因。Lubrizol Advanced Materials,Inc。 / 9911 Brecksville Road,Cleveland,Cleveland,Ohio 44141-3247 / 216.447.5000 Rev. < / div. < / div < / div>20220101
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅作为建议的起点使用。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于任何超出 Lubrizol Advanced Materials, Inc. 直接控制范围的材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和特定用途适用性的暗示保证。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。Lubrizol Advanced Materials, Inc. / 9911 Brecksville Road, Cleveland, Ohio 44141-3247 / 216.447.5000 Rev. 20220101
本综述介绍了设计刺激响应、功能性、侧链、端接液晶原基液晶聚合物 (LCP) 方面的最新进展。合成方法(包括受控技术和活性技术)的发展为获得定义明确的液晶聚合物提供了方便。例如,线性液晶嵌段共聚物 (LCBCP)(具有线性、螺旋-螺旋、非液晶嵌段和端接液晶原基液晶嵌段的嵌段共聚物)的合成为获得具有与传统嵌段共聚物类似的形态和性质的聚合物提供了途径。然而,具有分支螺旋-螺旋非液体液晶嵌段和端接液晶原基液晶嵌段的拓扑分支 LCBCP 的合成用于操纵所得聚合物的相行为、形态和取向动力学。此外,支链液晶无规共聚物的合成(其中支链螺旋非液晶单元和端接液晶单元呈统计分布)可产生前所未见的螺旋和弯曲界面,具有新的增强特性。最后,将有机染料分子整合到各种液晶聚合物框架中的合成策略可产生新的光学活性和自适应软材料。在展望部分,讨论了对拓扑多样化的合成和天然衍生的液晶聚合物结构的需求,以及生产功能材料及其应用的加工工具和场导向组件。
重复使用 存放在 White Rose Research Online 中的项目受版权保护,保留所有权利,除非另有说明。您可以下载和/或打印这些项目用于个人学习,或国家版权法允许的其他行为。出版商或其他权利持有人可能允许进一步复制和重复使用全文版本。这由 White Rose Research Online 记录中该项目的许可信息指示。
1义大利院物理化学研究所,波兰科学院,卡斯普尔扎卡44/52,01-224波兰华沙; humaj1137@gmail.com或humajameel89@gmail.com 2旁遮普大学的化学学院,拉合尔54590,巴基斯坦; faizan.muhammad7777@gmail.com 3 Institute of Chemistry, Technische Universität Chemnitz, Straße der Nationen 62, D-09111 Chemnitz, Germany 4 Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020 Antwerp, Belgium; muhammad.adeel@uantwerpen.BE 5化学技术研究所,化学技术学院,波尔迪乔沃,波兰4,60-965 Poznan,波兰Poznan Technology; teofil.jesionowski@put.poznan.pl 6卫生工程系,内斯克大学民用与环境工程学院,GDA´nsk技术大学,11/12 Narutowicza str。波兰的GDANSK 8萨利泰基奥大道物理科学与技术中心催化系。3,LT-10257 Vilnius,立陶宛; aldona.balciunaite@ftmc.lt *通信:grzegorz.boczkaj@pg.edu.pl;电话。: +48-697-970-303
1维(1D)配位聚合物指的是通过金属结合配体组中掺入金属离子或主链中的金属离子的大分子。,由于金属配体键的性质,它们比传统聚合物具有调节聚合物结构和功能的内在优势。因此,它们具有智能和功能结构以及伴随剂和治疗剂的巨大潜力。水溶性的1D配位聚合物和组件是协调聚合物的重要亚型,具有与生物和医疗应用等水性系统中苛刻应用的独特兴趣。本评论重点介绍了水溶性1D协调聚合物和组件的最新进展和研究成就。概述涵盖了1D配位聚合物的设计和结构控制,它们的胶体组件,包括纳米颗粒,纳米纤维,胶束和囊泡,以及制造的散装材料,例如膜无液体冷凝器,安全墨水,水凝胶驱动器和智能面料。最后,我们讨论了这些坐标国家聚合物结构和材料中几个的潜在应用,并在水性坐标聚合物的领域中展现出前景。
2指南,Nirant药房Boramani Solapur摘要聚合物胶束提出了一种可行的药物输送和靶向研究方法。与表面活性剂胶束相比,聚合物胶束是纳米级胶体颗粒,它们是从两亲性块共聚物中自组装的。它们的内核具有溶解大量疏水物质的能力。本文介绍了有关聚合胶束的许多主题,包括其基本原理,其中包括其大小,形状,化学,一般特征,结构分析和生产机制。也强调了多种聚合物胶束。在这里,我们特别关注了在多种应用中使用聚合物胶束作为纳米载体的最新进步,包括治疗癌症,治疗Covid-19,口服药物递送,皮肤药物递送,多核苷酸分布以及向大脑递送。聚合物胶束作为药物输送和有针对性应用的研究工具表现出巨大的希望。两亲性块共聚合物自组装以形成自组装的纳米级胶体颗粒,称为聚合物胶束。聚合物胶束由于其特殊的生物相容性,毒性很少,血液循环持续时间的延长以及能够在其胶束核心内溶解大量药物的能力,因此发现了广泛的应用。根据分子间力,聚合物胶束分为常规,Polyion复合物,并非共价连接。本文中解释了三种类型的准备方法。他们直接溶解,溶剂蒸发和透析法。这里使用的评估技术是关键的胶束浓度,大小和形状,体外药物释放行为。聚合物胶束可以用作向某些位置输送的药物,可以通过使用聚合物胶束来实现。关键字:块共聚物,溶解,聚合物胶束和胶束,药物输送,聚合物和纳米载体。引言称为聚合物胶束的自组装纳米颗粒由两亲性块聚合物组成,它们同时是亲水和疏水性块聚合物。与常规两亲物相似,两亲块聚合物还在临界分子浓度(CMC)上方的水溶液中产生聚合物胶束[1]。聚合物胶束与常规表面活性剂单体胶束相比,在疏水性核心内的单个表面活性剂分子之间形成了共价连接。此链接阻止了胶束伪相和自由解之间单体的动态交换。这证实了聚合物胶束的稳定性和刚度。该聚合物胶束中颗粒的大小为10-10 nm,比磷脂囊泡小。[2]聚合物胶束的尺寸受两亲性块共聚物的分子量,两亲和的聚集数以及亲水性和
概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。