在建筑物中广泛使用钢筋,以为混凝土结构提供强度和完整性。然而,这种材料非常容易受到氯化物污染环境中的腐蚀,这增加了结构不稳定性和失败的风险。这项工作表征了硝酸钠,酪蛋白和两个氨基酸(11-氨基酸苯甲酸和P-氨基苯甲酸)在模拟混凝土孔隙溶液中提供的机制和效率。使用电化学技术研究了临界氯化物浓度(C CIRT)中每种抑制剂的性能。开路电位和线性极化用于识别合成孔溶液中的C crit。电位动力学极化和电化学阻抗光谱,以评估C crit中抑制剂的腐蚀活性和钝化机制。结果表明,可以通过适当选择的腐蚀抑制剂来保护加固钢。在这里研究的抑制剂中,酪蛋白显示出最高的腐蚀抑制效率,最小电流密度为9.19×10 -8 µA/cm 2,抑制剂效率超过80%。酪蛋白在孔隙溶液中存在C CIRT的情况下为加固钢提供了消极。
图1。介绍概述。a。 MOF的SDF表示。负SDF值代表孔隙表面的内部,而正值表示孔隙表面的外部。b。SDF的Noising和denoising过程的图形说明。c。 Moffusion的模型架构。在Moffusion中,使用denoising 3D U-NET用于扩散过程,MOF构造函数用于从生成的SDF构建MOF。vq-vae用于数据压缩和恢复,但是从可视化中省略了它。疗程表现出包括数字,分类和文本数据在内的不同数据方式的条件。
在这项研究中,使用二维图像用于使用两步过程(8,14)来表征谷物和孔的形态。在第一步中,捕获图像。在第二步中,使用图像分析软件扫描了此类特征的面积和平均孔接触角,该软件能够准确测量孔隙和谷物空间的几个形态参数,如图1所示。本研究利用面积测量和接触角作为所有分析的标准参数。形态特征是根据面积和接触角度计算的,这将信息准确性的水平分为两个维度。该信息被认为是“大数据”,并分析了以找到可以减少成本和时间的答案。
摘要:多孔膜技术因其对绿色化学和可持续发展的显着贡献而在分离和生物学领域引起了极大的关注。由多乳酸(PLA)制造的多孔膜具有许多优势,包括低相对密度,高比表面积,生物降解性和出色的生物相容性。结果,它们在各种应用中表现出有希望的前景,例如石油 - 水分离,组织工程和药物释放。本文概述了使用静电纺丝,呼吸图和相分离方法在制造PLA膜方面的最新研究进步。首先,从孔形成的角度阐明了每种方法的原理。讨论和汇总相关参数与孔结构之间的相关性,随后对每种方法的优点和局限性进行了比较分析。随后,本文介绍了多孔PLA膜在组织工程,油水分离和其他领域中的多种应用。这些膜面临的当前挑战包括机械强度不足,生产效率有限以及孔结构控制的复杂性。相应地提供了增强和未来前景的建议。
为了优化激光诱导的石墨烯(LIG)JANUS膜,本研究研究了膜孔结构,聚二甲基硅氧烷(PDMS)涂层序列以及银(AG)纳米颗粒对膜蒸馏(MD)性能的影响。这项研究旨在增强石墨烯的光热特性,同时使用固有的电导率进行同时照相和电热MD。在相同的照片和电热功率输入中操作,lig janus membrane用较小的毛孔(即闪亮的一面)处理膜面部的膜膜,可改善53.6%的透气性能,并降低特定能量的特定能量35.4%,而与膜相比,用较大的毛孔(i.e.e.e.e.e.e.e.e.e.e)来治疗膜面孔。PDMS涂层序列的效果也取决于孔结构。对于具有较小孔结构的面部,激光照射前的涂层PDM(PDMS-BLSS)与激光照射后的涂层PDMS相比,与涂层PDMS相比,磁通量的提高高达24.5%,特异性能量降低了19.7%(PDMS-ALS)。至于孔结构较大的面部,激光照射前的涂层PDM(PDMS-BLDS)导致与辐照后涂层PDMS相比,与涂层PDMS相比,通量降低高达20.8%,比能量增加了27.1%(PDMS-ALDS)。带有Ag纳米颗粒的LIG JANUS膜导致光热特性提高,将通量提高43.1 - 65.8%,并使特定能量降低15.2 - 30.5%,同时维持相似的电热热特性。进行同时进行照相和电热量MD表明,只有Ag掺杂的Janus Lig膜产生协同作用,从而使组合加热模式的通量高于在单个加热模式下运行时获得的通量的求和。
超级电容器是一种重要的电化学储能装置。1~3单个超级电容器由电极、隔膜、电解液和集流体组成,其中电极材料是最重要的组成部分。4超级电容器技术进步的关键在于开发高性能的电极材料。5多孔碳材料在超级电容器电极中得到了广泛的应用,研究日益深入。6,7碳基超级电容器主要利用电极与电解液界面处形成的双电层进行电荷存储。碳材料的孔结构,包括比表面积、孔径及尺寸分布,是决定碳电极材料电容性能的关键。8,9
天然气提取的传统目标是富含甲烷的水库。但是,近年来,人们对氦气和氢等非甲烷气体的兴趣增加。此外,某些操作员的目标已经扩展到除了提取资源之外,还包括将加压气体和其他流体注入地下。尽管向储层注入气体可以促进碳氢化合物的提取,例如在增强的石油回收中,对孔隙空间的需求增加可能会导致竞争和对其使用的冲突。孔隙空间已获得了重新引起的注意力和意义,尤其是在碳捕获,使用和存储(CCUS)项目方面,将二氧化碳注入深度地下储层中的意图是隔离气体。
当剪裁面部或在跑步沙子中进行发掘时,裸露的土壤将流动或“奔跑”到发掘中,并用液体砂/淤泥填充。这些条件显然是一个问题,将排除SEM(顺序发掘方法),其中短期面部稳定性至关重要。但土壤力学理论告诉我们,跑沙不是一种材料。实际上,当孔隙水压高时,可以存在颗粒状材料,从而产生低有效的应力,从而导致土壤失去其所有强度并变得液体。一旦理解了这一点,就可以看出地下水降压(例如,使用孔内井)可以减少孔隙水压,并将跑步的沙子变成更稳定的地面,适合仔细的隧道。
定向能量沉积 (DED) 增材制造 (AM) 在许多应用领域受到越来越多的关注,例如修复、再制造和功能梯度结构制造。然而,在粉末流动的激光 DED 中,激光与物质的相互作用和熔池动力学仍然不清楚,特别是在过程中孔隙如何在熔池内形成和流动。了解孔隙的形成机制对于 DED AM 部件的鉴定、认证和整体性能至关重要。孔隙是一种常见现象,会严重影响 DED 制造部件的质量,因为孔隙可以作为裂纹成核和扩展的场所。在这里,我们通过原位和原位高速高分辨率 X 射线成像揭示了 DED AM 过程中的四种孔隙形成机制。我们的结果证实,原料粉末内的孔隙会在过程中引起孔隙。我们还观察到了激光粉末吹制 DED 工艺所特有的孔隙形成机制,这是粉末输送、小孔动力学、熔池动力学和保护气体的结果。高速 X 射线图像为孔隙形成机制提供了直接证据,并表明与输送粉末和熔池相互作用相关的孔隙在激光粉末吹制 DED AM 中尺寸最大。这些结果将指导 DED AM 中的孔隙度缓解、消除和控制。
G. Sampath无隶属的sampath_2068@yahoo.com摘要。肽合成。肽是合成的C-TO-N或N-TO-C,作为延伸到同肽标头的延伸,一端绑定到固定表面,另一端绑定为固定表面,并由纳米孔封闭。表面安装在可以以0.1-0.15 nm精度移动的平台上;孔的作用像核糖体隧道,可保护氨基酸(AA)侧链免受不需要的耦合,并且还可以防止聚集和环化。合成发生在以下步骤中的循环中:耦合剂将受末端保护的AA连接到孔末端生长的头端残基;光学检测到耦合的完成;耦合剂,保护器和多余的AA被洗掉;该平台缩回3.5Å;新添加的AA被抛弃,保护器被洗净。合成完成后,平台通过添加的肽的长度向孔移动,将肽与标头分开。电势和液压的组合始终保持肽的完全拉伸。纳米孔发挥了次要作用,在上面没有进行测量。可以使用一系列标头和一系列纳米孔来完成平行合成,最高能力的纳米孔可以实现。原则上,可以合成的肽长度没有限制。没有侧链保护,最小的试剂量,减少洗涤,几乎没有合成后清理,该方法具有潜在的绿色水平。