在乌克兰与其合作伙伴之间积极讨论了占领俄罗斯国家资产并利用它们来帮助乌克兰的选择。一些乌克兰盟友认为应没收程序应由国家法律建立。,例如,在2022年6月,加拿大议会通过了C-19法案,通过混合行政和法院程序,可以没收外国,个人和公司的资产。美国的立法已经包含行政工具,供总统阻止,抓住和处置敌对国家的资产以及各自的程序规定。但是,存在重大挑战,需要立法修正案。尽管如此,仅通过国家法律就没收俄罗斯主权资产将是对国际习惯法的严重侵犯,该法律绝对可以保护国家及其财产的免疫力免受其他州的行动。并非所有持有此类资产的州都可以承受与美国和加拿大相同的行动,此外,这可能导致破坏国际法作为公认的监管机制,甚至导致将俄罗斯作为敌对行动的受害者。
摘要 许多 COVID-19“疫苗”被视为生物武器,已知具有引发朊病毒病的能力。朊病毒诱导剂已被广泛研究为潜在的生物武器,而秘密生物武器特工渗透到朊病毒研究领域。为了使朊病毒病诱导剂成为理想的生物武器,目标人群需要相信这种疾病无法治愈,而攻击者知道一种治疗方法/解毒剂,以便在发生“反击”时拯救自己的人口,即攻击者的人口暴露于生物武器。朊病毒领域的说法是,目前没有有效的治疗朊病毒病的方法。然而,在当前的 COVID-19 相关生物武器攻击中,虚假叙述是常态。作者进行了文献检索,以确定是否存在任何对 COVID“疫苗”诱发的朊病毒病的有效治疗方法,但这些方法对公众隐瞒了。作者认为可能存在几种这样的候选药物,需要探索它们在治疗 COVID“疫苗”诱发的朊病毒疾病中的用途。这些药物包括强力霉素和相关的米诺环素、奎纳克林和伊维菌素。本文的性质在很大程度上是推测性的,因为在当前的内战中使用了生物武器。许多人并不惊讶,在政府、医学、科学和制药行业工作的人故意试图造成伤害,同时假装帮助人类。人们只需阅读与摩萨德特工杰弗里·爱泼斯坦有关的一长串有影响力的人物名单,就能意识到当今世界的邪恶程度。
摘要 在产品开发项目中,管理不断增长的需求是一项耗时且高度复杂的活动。随着近几十年来人工智能 (AI) 的兴起,算法现在能够支持需求工程 (RE) 任务。算法智能处理自然语言数据的能力以及在 RE 中的应用已得到广泛发表。然而,在已建立的 RE 流程中,通常不清楚在哪里可以使用人工智能算法。结果是最先进的人工智能算法与其在实际 RE 流程中的应用率之间存在显著的不平衡。原因之一是,当前的 RE 流程模型无法传达识别合适任务所需的信息。因此,本文旨在提供一个具有面向数据处理的视角的有限和标准化流程步骤框架,可用于系统地识别 RE 流程中可以应用人工智能算法的点。通过该框架的标准化流程步骤,可以抽象和表达已建立的 RE 流程,使其与人工智能算法的范围兼容。由于标准化流程步骤数量有限,因此可以构建适用于已定义流程步骤的 AI 算法库,以便有效评估其适用性。所提出的框架是在与行业参与的研究项目中合作开发的。
摘要 在产品开发项目中,管理不断增长的需求是一项耗时且高度复杂的活动。随着近几十年来人工智能 (AI) 的兴起,算法现在能够支持需求工程 (RE) 任务。算法智能处理自然语言数据的能力以及在 RE 中的应用已得到广泛发表。然而,在已建立的 RE 流程中,通常不清楚在哪里可以使用人工智能算法。结果是最先进的人工智能算法与其在实际 RE 流程中的应用率之间存在显著的不平衡。原因之一是,当前的 RE 流程模型无法传达识别合适任务所需的信息。因此,本文旨在提供一个具有面向数据处理的视角的有限和标准化流程步骤框架,可用于系统地识别 RE 流程中可以应用人工智能算法的点。通过该框架的标准化流程步骤,可以抽象和表达已建立的 RE 流程,使其与人工智能算法的范围兼容。由于标准化流程步骤数量有限,因此可以构建适用于已定义流程步骤的 AI 算法库,以便有效评估其适用性。所提出的框架是在与行业参与的研究项目中合作开发的。
自 2019 年出现致命冠状病毒以来,全球都在努力应对 2019 年冠状病毒病 (COVID-19) 大流行。冠状病毒病 (COVID) 疫苗的研发是应对病毒方法的重大突破。已经进行了各种研究来确定病毒的作用方式以及管理 COVID 的方法,包括疫苗的有效性。然而,尽管这些致命毒株对免疫功能低下人群产生了严重影响,但关于这些措施对免疫功能低下人群如何起作用的数据有限。具体来说,本综述旨在关注肾移植接受者 (KTR)。研究表明,尽管接种了额外的加强剂量,但一些免疫功能低下人群的疫苗反应明显较低,因此需要为这些患者提供增强或替代的保护,以对抗严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2)。这表明需要采取替代或更有针对性的方法来为这些群体提供足够的 COVID-19 保护。一些建议的方法包括在接种疫苗之前和/或之后停止使用免疫抑制剂,增加疫苗剂量或缩短间隔时间,以及提供单克隆抗体 (mAb) 或抗病毒疗法的混合疗法。然而,适当的改变和增强程度以及其安全性和有效性仍有待确定。此外,不断出现的更具毒性的菌株,如 Omicron 及其亚谱系或 Deltacron,强调需要进行持续研究以评估当前治疗对这些新变体的有效性。总体而言,积极关注和适当更新 COVID-19 指南是必要的。
多年来,自身免疫性疾病的特征已经很好,并且并非所有途径都被发现可以解释其病理生理学。自身弹性疾病仍隐藏了大部分分子和细胞机制。在过去的几年中,新来者挑战了只有自适应免疫才能显示内存响应的想法。受过训练的免疫力是由先天免疫反应来定义的,这些反应比第二个刺激更快,更强大,而对第一个刺激(或不相同)。响应于训练有素的免疫诱导剂,以及通过骨髓中造血干和祖细胞的代谢和表观遗传变化传播到其细胞后代(周围训练的免疫),或直接对组织 - 固定细胞(局部免疫)的直接刺激性和直接在刺激性上的作用。先天免疫力可能是有益的,但适应不良时也可能有害。在这里,我们讨论了受过训练的免疫力如何有助于自身免疫性和自身免疫性疾病的生理病理学。
2019 年冠状病毒病 (COVID-19) 对孕妇构成严重威胁。预防和管理 COVID-19 疫情的关键策略之一是接种疫苗。群体免疫因 COVID-19 疫苗犹豫不决而受到严重阻碍,这对人口健康构成潜在威胁。因此,本研究旨在确定巴基斯坦孕妇对 COVID-19 疫苗犹豫不决的发生率和严重程度、影响她们决定的决定因素,并与非孕妇参与者进行比较评估。这项横断面调查于 2021 年 11 月至 2022 年 2 月进行。参与者进行了关于疫苗接种犹豫的经过验证的疫苗接种态度检查 (VAX) 量表,他们还被要求表明他们是否倾向于接种 COVID-19 疫苗以及犹豫的原因。与非孕妇类别的 353 名参与者相比,372 名回答问卷的孕妇参与者中犹豫不决的受访者比例要高得多。同样,与 31% 的非孕妇参与者相比,约有 40% 的孕妇将她们接种新冠病毒疫苗的意愿归因于社交媒体。她们在 VAX 指标的所有子类别中也表现出相当高的平均得分。调整后的比值比结果显示,疫苗接种犹豫的独立因素似乎是相信社交媒体上的谣言(调整后 OR:2.58)、不害怕新冠病毒(调整后 OR:2.01)、不相信新冠病毒的存在(调整后 OR:2.53)和不相信疫苗(调整后 OR:4.25)。准妈妈们对新冠病毒疫苗的不确定性非常普遍。这项调查强调了向公众接种 COVID-19 疫苗的迫切必要性,包括那些可能对疫苗感到焦虑的准妈妈们。
引言如今,点对点量子密钥分发 (QKD) 已经成为商业现实。商用 QKD 系统的范围通常在光纤上为 100 公里。学术系统和新协议可以达到数百公里 1、2。中国墨子号卫星已经展示了与低地球轨道卫星的自由空间 QKD 链路 3。然而,单个点对点链路的范围仍然受到链路功率损耗的限制 4。为了扩展 QKD 的实际应用,有必要将范围扩展到全球 QKD 并提供更复杂的网络拓扑 5。随着量子中继器等新技术的出现,这种扩展的多功能性可以通过所谓的可信节点 (TN) 6 实现。在 TN 中,量子信号被测量并转换为经典信号。生成一个新的经典信号,转换为量子,然后发送到下一个节点。 TN 可用作中继,提供长距离 QKD,也可用作交换机,提供复杂的拓扑 5 。然而,由于 TN 包含经典信号,原则上可以被复制,因此 TN 内不存在量子安全性。必须信任 TN 并对其进行物理保护,以避免数据泄露 5 。因此,出于安全目的,TN 代表了完整的端到端 QKD 传输中的薄弱环节。在本文中,术语“长距离 QKD”是指全球 QKD,即在地球上任意两点之间部署和实施 QKD 的能力。最近,英国知识产权局向 Arqit Ltd. 公司授予了专利号 GB2590064(https://www.ipo.gov.uk/p-ipsum/Case/PublicationNumber/GB2590064)我们还将本专利中描述的协议称为 ARQ19 协议。本专利旨在提供没有 TN 的长距离 QKD。根据这些说法,现在可以使用不受信任的卫星实现全球 QKD。这将改变 QKD 的游戏规则。因此,调查这些说法显然很重要。不幸的是,据我们所知,它们尚未在任何科学期刊上通过随附的公开披露得到验证。因此,我们的分析基于已发布的 ARQ19 专利和 Arqit 在美国证券交易委员会 (SEC) 提交的 20-F 年度报告 (https://www.sec.gov/Archives/edgar/data/0001859690/000110465921150276/arqq-20210930x20f.htm)。本报告将
公正的过渡正在逐渐增加气候变化议程。五年前,《巴黎协定》认识到将工人和社区中心阶段的利益的必要性,以便脱碳带来体面的工作和优质的工作。只是过渡是结缔组织,将气候目标与社会成果结合在一起。对于所有经济部门(绝不限于能源供应)以及在城市和农村地区的所有经济部门也很重要,为建立所需变化的政治支持至关重要。但是,将公正的过渡变成日常现实显然是一个艰巨的挑战。
1。Mayer-Davis,E.J。等,年轻人中1型和2型糖尿病的发病率趋势,2002-2012。新英格兰医学杂志,2017年。376(15):p。 1419-1429。2。福布斯,J.M.和M.E.库珀,糖尿病并发症的机制。生理评论,2013年。93(1):p。 137-188。3。Volpe,C.M.O。等人,细胞死亡,活性氧(ROS)和糖尿病并发症。细胞死亡与疾病,2018年。9(2):p。 119。4。Yaribeygi,H。等,抗糖尿病药物的抗氧化潜力:一种可能针对糖尿病患者血管并发症的保护机制。细胞生理学杂志,2019年。234(3):p。 2436-2446。5。Yaribeygi,H。等人,对抗糖尿病抗炎药的抗炎特性的综述,可针对糖尿病的血管并发症提供保护作用。细胞生理学杂志,2019年。234(6):p。 8286-8294。6。Yaribeygi,H。等人,新型抗糖尿病药对糖尿病和恶性肿瘤凋亡过程的影响:对降低组织损伤的影响。生命科学,2019年。7。Chaudhury,A。等,抗糖尿病药物的临床评论:对2型糖尿病的影响。内分泌学中的前沿,2017年。8:p。 6。8。Bennett,W.L。等人,2型糖尿病的药物的比较有效性和安全性:包括新药和2药物组合的更新。154(9):p。 602-613。内科年鉴,2011年。9。Yaribeygi,H。等人,藏红花及其活性成分的抗糖尿病潜力。细胞生理学杂志,2019年。234(6):p。 8610-8617。10。Yaribeygi,H。等,有氧运动诱导胰岛素敏感性的分子机制。细胞生理学杂志,2019年。234(8):p。 12385-12392。11。Yaribeygi,H。等人,在调节糖尿病的葡萄糖稳态中,海藻糖的分子机制。糖尿病与代谢综合征:临床研究与评论,2019年。12。A.D.协会,糖尿病的诊断和分类。 糖尿病护理,2014年。 37(补充1):p。 S81-S90。 13。DeFaria Maraschin,J。,糖尿病中的糖尿病分类。 2013,施普林格。 p。 12-19。 14。 O'Neal,K.S.,J.L。 约翰逊和R.L. panak,识别和适当治疗成人的潜在自身免疫性糖尿病。 糖尿病光谱,2016年。 29(4):p。 249-252。 15。 Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。 细胞生理学杂志,2019年。 234(6):p。 8152-8161。 16。 塞缪尔(Samuel),V.T。 和G.I. Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。 临床研究杂志,2016年。 126(1):p。 12-22。 17。 糖尿病,2016年:p。 DB160240。 18。 19。A.D.协会,糖尿病的诊断和分类。糖尿病护理,2014年。37(补充1):p。 S81-S90。13。DeFaria Maraschin,J。,糖尿病中的糖尿病分类。2013,施普林格。p。 12-19。14。O'Neal,K.S.,J.L。 约翰逊和R.L. panak,识别和适当治疗成人的潜在自身免疫性糖尿病。 糖尿病光谱,2016年。 29(4):p。 249-252。 15。 Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。 细胞生理学杂志,2019年。 234(6):p。 8152-8161。 16。 塞缪尔(Samuel),V.T。 和G.I. Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。 临床研究杂志,2016年。 126(1):p。 12-22。 17。 糖尿病,2016年:p。 DB160240。 18。 19。O'Neal,K.S.,J.L。约翰逊和R.L.panak,识别和适当治疗成人的潜在自身免疫性糖尿病。糖尿病光谱,2016年。29(4):p。 249-252。15。Yaribeygi,H。等,胰岛素抵抗:基础分子机制的综述。细胞生理学杂志,2019年。234(6):p。 8152-8161。16。塞缪尔(Samuel),V.T。和G.I.Shulman,胰岛素抵抗的发病机理:整合信号通路和底物通量。临床研究杂志,2016年。126(1):p。 12-22。17。糖尿病,2016年:p。 DB160240。18。19。færch,K。等人,胰岛素抵抗伴随着胰高血糖素的增加和胰甘蓝抑制的正常和受损葡萄糖调节的个体的延迟抑制。Hall,J.E。,Guyton和Hall医学生理学电子书教科书。 2015:Elsevier Health Sciences。 Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。 分子系统生物学,2009年。 5(1):p。 243。 20。 Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。 Diabetologia,2012年。 55(10):p。 2565-2582。 21。 Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Hall,J.E。,Guyton和Hall医学生理学电子书教科书。2015:Elsevier Health Sciences。 Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。 分子系统生物学,2009年。 5(1):p。 243。 20。 Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。 Diabetologia,2012年。 55(10):p。 2565-2582。 21。 Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。2015:Elsevier Health Sciences。Kiselyov,V.V。等,胰岛素和IGF1受体的变构结合和激活的谐波振荡器模型。分子系统生物学,2009年。5(1):p。 243。20。Copps,K。和M. White,丝氨酸/苏氨酸磷酸化对胰岛素受体底物蛋白IRS1和IRS2的磷酸化调节。Diabetologia,2012年。55(10):p。 2565-2582。21。Ho,C.K.,G。Sriram和K.M. 使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。 分子遗传学和代谢,2016年。 119(3):p。 288-292。 22。 Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Ho,C.K.,G。Sriram和K.M.使用胰岛素信号转导途径的数学模型,肥胖和II型糖尿病的个体中的胰岛素敏感性预测。分子遗传学和代谢,2016年。119(3):p。 288-292。22。Koeppen,B.M。 和B.A. Stanton,Berne和Levy生理学电子书。 2017:Elsevier Health Sciences。Koeppen,B.M。和B.A.Stanton,Berne和Levy生理学电子书。2017:Elsevier Health Sciences。2017:Elsevier Health Sciences。