PQC生成了对量子计算算法(例如Shor's算法)具有抗性的加密算法,并且已经由国家标准技术研究所(NIST)和其他人开发了几年。与公钥加密算法不同,PQC算法不使用整数分解,离散对数或椭圆形曲线离散对数问题,该问题可能会因运行Shor shor算法的量子计算机而破坏。值得注意的是,PQC算法可以在当今的传统计算机而不是量子机上运行。PQC可能是量子抵抗的主要市场解决方案,并且很可能是美国政府的首选解决方案。NIST将于今年最早发布PQC标准的初稿和2024年的标准化版本。
摘要。生成模型,尤其是生成对抗网络(GAN),正在作为蒙特卡洛模拟的可能替代方法。已经提出,在某些情况下,可以使用量子gan(qgans)加速使用gan的模拟。我们提出了QGAN的新设计,即双参数量子电路(PQC)GAN,该设计由一个经典的歧视器和两个采用PQC形式的量子代理组成。第一个PQC在n -pixel图像上学习了一个概率分布,而第二个PQC则为每个PQC输入生成了单个图像的归一化像素强度。为了了解HEP应用程序,我们评估了模仿热量计输出的任务的双PQC体系结构,转化为像素化图像。结果表明,该模型可以复制尺寸降低及其概率分布的固定数量的图像,我们预计它应该使我们可以扩展到实际热量计输出。
摘要。生成模型,尤其是生成对抗网络 (GAN),正在被研究作为蒙特卡罗模拟的可能替代方案。有人提出,在某些情况下,使用量子 GAN (qGAN) 可以加速使用 GAN 的模拟。我们提出了一种新的 qGAN 设计,即双参数化量子电路 (PQC) GAN,它由一个经典鉴别器和两个采用 PQC 形式的量子生成器组成。第一个 PQC 学习 N 像素图像的概率分布,而第二个 PQC 为每个 PQC 输入生成单个图像的归一化像素强度。为了实现 HEP 应用,我们在模拟量热仪输出并将其转换为像素化图像的任务上评估了双 PQC 架构。结果表明,该模型可以重现固定数量的图像,尺寸更小,并且能够重现它们的概率分布,我们预计它应该可以让我们扩展到真实的量热仪输出。
与PQC相关的联邦政府的里程碑(直到2026年):•制定联邦政府的策略,以移民到量子后加密术•继续迁移到高安全性系统的量子后加密系统•在其他相关地区开始PQC迁移,将PQC迁移到其他相关领域中
摘要 - Post-Quantum密码学(PQC)将很快成为许多未来系统的标准。随着量子计算机的出现,所有基于传统不对称加密(例如RSA,ECC)的加密通信将变得不安全。定义PQC标准是快速速度进行的过程,涉及新的和很大程度上未开发的加密原语。因此,PQC算法的硬件实现的设计仍在研究中。在本文中,我们介绍了PQC的基础知识,重点是基于晶格的密码及其硬件安全问题,即侧通道和基于故障的攻击。然后,我们专注于基于同一的密码学和Sike算法。我们根据瞬态断层的电磁注入来强调通过表现出耐断层设计选择的重要性,以此为目标。最后,我们展示了一个有趣的想法,从观察到某些PQC算法具有内在的概率行为。我们认为,这种特征是一个明显的机会,它为将近似(或不精确)计算应用于PQC加密的实施铺平了道路。
对参数化量子电路(PQC)的成本景观知之甚少。然而,PQC在量子神经网络和变异量算法中都采用,这可能允许接近量子的优势。此类应用需要良好的优化器来培训PQC。重点的工作重点是专门针对PQC量身定制的量子意见的操作器。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析中证明了PQC的两个结果:(1)我们在PQC中找到了指数较大的对称性,在成本景观中产生了最小值的指数较大的变性。另外,可以将其作为相关超级参数空间体积的指数减少。(2)我们研究了噪声下对称性的弹性,并表明虽然在噪声下是保守的,但非积极通道可以打破这些对称性并提高最小值的脱位,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小值(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,SYMH在存在与当前硬件相当的级别的情况下提高了整体优化器性能。总的来说,这项工作从局部门传输中得出了大规模电路对称性,并使用它们来构建噪声知识优化方法。
当前用于加密货币交换的区块链系统主要采用椭圆曲线加密(ECC)来生成钱包中的密钥对,而椭圆曲线数字签名算法(ECDSA)来生成交易中的签名。因此,随着量子计算技术的成熟,当前的区块链系统面临量子计算攻击的风险。量子计算机可能可能由ECDSA产生的伪造标记。因此,本研究分析了当前区块链系统对量子计算攻击的漏洞,并提出了基于量子后加密术(PQC)基于基于的区块链系统,以通过解决和改善每个已确定的弱点来提高安全性。此外,这项研究提出了基于PQC的钱包和基于PQC的交易,利用PQC数字签名算法来生成基于PQC的
•它将以从传统(RSA/ECC)迁移到第一代PQC和Hybrid Solutions的Svereal步骤进行,然后再进行下一步或第二代或nen n代PQC算法
2030 年预计将是推出 6G(第六代)电信技术的一年。预计这一年还将推出功能强大到足以破解当前加密算法的量子计算机。加密技术仍然是保护互联网和 6G 网络的支柱。后量子密码 (PQC) 算法目前正在由 NIST(美国国家标准与技术研究所)和其他监管机构开发和标准化。PQC 部署将使 6G 的极低延迟和低成本目标几乎无法实现,因为大多数 PQC 算法依赖的密钥比传统 RSA(Rivest、Shamir 和 Adleman)算法中的密钥大得多。大型 PQC 密钥会消耗更多的存储空间和处理能力,从而增加其实施的延迟和成本。因此,PQC 部署可能会损害 6G 网络的延迟和定价目标。此外,NIST 评估的所有 PQC 候选者迄今为止均未通过评估,这严重危及了它们的标准化,并使 6G 的安全在 Q-Day 威胁面前陷入了两难境地。本报告提出了一个研究问题,并建立和支持了一个研究假设,以探索一种替代的绝对零信任 (AZT) 安全策略来保护 6G 网络。AZT 是自主的、快速的且成本低廉的。
摘要 - 安装的系统具有灵活性和成本效益,因此在我们日常生活的几乎每个部分都发现了用例。由于其广泛使用,它们也已成为网络攻击的宝贵目标。但是,由于有限的嵌入式设备的合并功率和内存有限,将最先进的网络安全从服务器和台式机转换为嵌入式领域可能会具有挑战性。尽管量子计算仍在早期的研发中,但它可能会破坏常规的不对称加密术,这是当前使用的最安全应用程序的关键组成部分。鉴于嵌入式设备的寿命很长,可以持续数十年,因此研究必须更快地找到Quantum(PQ)安全性的解决方案。量子加密后(PQC)的领域在2019年受到了广泛关注,当时美国国家标准与技术研究所(NIST)发起了一项竞赛以找到合适的PQC算法。在PQC竞争中,新型PQC算法在嵌入式设备上的适用性是引起重大研究兴趣的重要主题。我们提供了有关嵌入式系统PQC的最新研究的调查。但是,我们的研究并没有专注于PQC算法,而是围绕着旨在帮助嵌入开发人员从整合的角度来了解当前研究状态的实际用例。